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Overview

I will provide a brief introduction to inference for computer experiments
from a Bayesian hierarchical modeling perspective. We will also briefly
touch on model discrepancy as presented in the paper “Bayesian
Calibration of Computer Models” by Kennedy and O’Hagan (2001).
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The error model (no model discrepancy)

Let X ⊂ Rq be a spatio-temporal domain. We wish to infer unknown
model component, θ ∈ Θ, from the observations,

y(xi ) = m(xi , θ) + ε(xi ), xi ∈ X , i = 1, . . . ,T ,

of the deterministic state m contaminated with stochastic noise ε. This
appears to be a straightforward nonlinear regression problem.
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A problem of nonlinear regression?

A BHM for a nonlinear regression problem looks like this. Note that we
need to be able to evaluate the model m(x, θ) at arbitrary θ locations.

[y(x) | m(x, θ), θ] ∼ f (y(x) | m(x, θ))

[m(x, θ) | θ] ∼ δ(m(x, θ))

[θ] ∼ π(θ).

But: A single computer model run in many modern applications can take
days, so direct penalized likelihood optimization or exact posterior
sampling are no longer reasonable options.
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A different formulation

The now standard approach to this problem consists of augmenting the
data vector y(x) by a vector of model runs m(x, θ̃) where the model is
evaluated at a fixed number of parameter regimes θ̃ = (θ1, . . . , θM)>

[y(x) | m(x, θ̃),m(x, θ), θ] ∼ f (y(x) | m(x, θ), θ)[
m(x, θ̃) | m(x, θ), θ

]
∼ δ(m(x, θ̃))

[m(x, θ)] ∼ GP(µ, k)

[θ] ∼ π(θ).

That is, we make predictions on the computer model across the
parameter space (this is called emulation) and interrogate this surrogate
model to evaluate the likelihood of y . The resulting posterior is exact.
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Gaussian process regression

Definition: A Gaussian process is a collection of random variables, any
finite number of which have a joint multivariate Gaussian distribution.

A Gaussian process m(θ) is completely specified by its mean function
µ(θ) and covariance function k(θ, θ′):

µ(θ) = E (m(θ)) ,

k(θ, θ′) = E
[
{m(θ)− µ(θ)}{m(θ′)− µ(θ′)}

]
.

We will write,
m ∼ GP (µ, k)
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Gaussian process regression

We have an unknown latent function m : [0,T ]→ R which we are trying
to recover with prior,

m ∼ GP (µ, k)

where the prior mean µ : [0,T ]→ R can be any function, for example, it
can be zero for all θ. The prior covariance k : [0,T ]× [0,T ]→ R is a
bi-linear operator describing how nearby points are related to one
another. Here is an example:

k(θ, θ′) = exp

{
−1

2
|θ − θ′|2

}
This is called a squared exponential covariance, and it implies that
covariance between m(θ) and m(θ′) decreases with the exponential of
their squared distance.
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Gaussian process regression

The following joint distribution,

(
m(x, θ)

m(x, θ̃)

)
∼ N

{
0,

(
k(θ, θ) k(θ, θ̃)

k(θ̃, θ) k(θ̃, θ̃)+σ2I

)}
,

can be used to obtain the likelihood using well-known Gaussian identities.
The posterior is:

m(x, θ) | m(x, θ̃) ∼ N
(
µ(θ̃),Λ(θ̃, θ̃)

)
where

µ(θ̃) = k(θ̃, θ)
{
k(θ, θ)+σ2I

}−1
m(x, θ̃)

Λ(θ̃, θ̃) = k(θ̃, θ̃)− k(θ̃, θ)
{
k(θ, θ)+σ2I

}−1
k(θ, θ̃)

For computer experiments we choose σ2 = 0.
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Gaussian process regression

Figure from “Gaussian processes for machine learning” by Rasmussen and Williams
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Discrepancy

In reality, the computer model is not perfect, and has some discrepancy
that varies with location, and the error model may look like this:

y(xi ) = ρm(xi , θ) + d(xi ) + ε(xi ), xi ∈ X , i = 1, . . . ,T ,

where ρ is an unknown constant and d(·) is a model discrepancy function
which does not depend on the computer model m (Kennedy and
O’Hagan, 2001). We can model ρ and d(·) via an additional layer in our
Bayesian hierarchy. Note that since d is a function, a Gaussian process
prior may be appropriate.
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