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Abstract

Kriging (Gaussian process, spatial correlation) metamodels
approximate the Input/Output (I/O) functions implied by the
underlying simulation models; such metamodels serve sensitivity
analysis and optimization, especially for computationally expen-
sive simulations. In practice, simulation analysts often know that
the I/O function is monotonic. To obtain a Kriging metamodel
that preserves this known shape, this article uses bootstrapping
(or resampling). Parametric bootstrapping assuming normality
may be used in deterministic simulation, but this article focuses
on stochastic simulation (including discrete-event simulation) us-
ing distribution-free bootstrapping. In stochastic simulation, the
analysts should simulate each input combination several times
to obtain a more reliable average output per input combination.
Nevertheless, this average still shows sampling variation, so the
Kriging metamodel does not need to interpolate the average out-
puts. Bootstrapping provides a simple method for computing a
noninterpolating Kriging model. This method may use standard
Kriging software, such as the free Matlab toolbox called DACE.
The method is illustrated through the M/M/1 simulation model
with as outputs either the estimated mean or the estimated 90%
quantile; both outputs are monotonic functions of the tra¢ c rate,
and have nonnormal distributions. The empirical results demon-
strate that monotonicity-preserving bootstrapped Kriging may
give higher probability of covering the true simulation output,
without lengthening the con�dence interval.
Keywords: Queues: simulation; Simulation: statistical analy-

sis; Statistics: nonparametric
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1 Introduction

Simulation models are applied in a great variety of scienti�c disciplines,
from (say) sociology to astronomy; see Karplus (1983)�s famous overview.
The goals of these simulation models may be classi�ed as (also see Klei-
jnen, 2008, p. 7)

� sensitivity analysis� either global (�what if�analysis) or local (gra-
dient or derivative estimation)� of the simulation model;

� optimization of the real system being simulated.

To realize these two goals, the simulation analysts �experiment�with
the simulation model; i.e., they run the model with di¤erent combina-
tions of the �inputs�of the simulation model; these inputs may be either
input variables (e.g., the number of servers in a queuing simulation)
or parameters (e.g., the server speed); see Zeigler, Praehofer, and Kim
(2000)�s fundamental book on simulation.
Unfortunately, practical simulation often requires much computer

time for obtaining the output (response) w for an input combination x.
The analysts therefore �t a metamodel to the relatively small number
(say) n of input combinations xi (i = 1; : : : ; n) actually simulated; i.e.,
a metamodel is a model of the Input/Output (I/O) behavior of the un-
derlying simulation model. The most popular types of metamodels are
�rst-order and second-order polynomials. Kriging (also called �Gaussian
Process�or �spatial correlation�) metamodels have also become popular in
deterministic simulation, which is applied in Computer Aided Engineer-
ing (CAE); see the classic article on Kriging in deterministic simulation
by Sacks et al. (1989), the popular textbook by Santner, Williams, and
Notz (2003) and the additional recent references in Kleijnen (2008, p.
3).
Mathematically speaking, these Kriging models are (exact) interpo-

lators; i.e., the Kriging predictors equal the outputs observed for the n
�old�input combinations. Only recently, Kriging has been investigated
for random simulation models; the oldest publication seems Van Beers
and Kleijnen (2003) (we ignore randomness caused by numerical noise,
which is an issue in simulation models used in engineering; see Forrester,
Sóbester, and Keane (2008, p. 141)). The outputs of such simulation
models are random; i.e., the use of di¤erent Pseudo-Random Number
(PRN) streams give di¤erent output observations. The interpolation
property of Kriging is then less desirable. Santner et al. (2003, pp.
215-249) account for the so-called nugget e¤ect or measurement error
by adding a white noise term; their Kriging predictor does not interpo-
late the n outputs; also see Forrester et al. (2008, p. 143). Recently,
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Ankenman, Nelson, and Staum (2009) introduced Kriging for random
simulation, accounting for variance heterogeneity (e.g., the variance of
the waiting time increases as the tra¢ c rate in a queuing simulation
increases). A similar Kriging model is developed by Yin, Ng, and Ng
(2008), who speak of the �modi�ed nugget e¤ect�. The Kriging predic-
tors that account for nugget e¤ects do not interpolate the n outputs
averaged over the (say) mi (i = 1; : : : ; n) replicates per input combina-
tion; these replicates are Identically, Independently Distributed (IID) if
they use nonoverlapping PRN streams. Ankenman et al. also account
for possible correlations between the outputs for di¤erent input combi-
nations caused by the use of Common Random Numbers (CRN); CRN
mean that the same PRN seed (initial value) is used to generate the
same replication number (say) r for all the n input combinations, where
r = 1; : : : ;m = minimi.
Unfortunately, there is no well-documented software implementing

these nugget e¤ects (e.g., Ankenman et al. use their �own code written
in S-PLUS�); popular software (either commercial or academic) assumes
deterministic simulation. We focus on the free Matlab Kriging toolbox
called DACE, which is well documented in Lophaven, Nielsen, and Son-
dergaard (2002).
In this article, we assume a given design� i.e., the n input combi-

nations and their number of replicates mi are given� that is so small
(because the simulation model is so expensive) that the classic Kriging
metamodel does not preserve the shape of the I/O function. To solve
the problem of �wiggling�or �erratic�Kriging metamodels, we shall derive
bootstrapped Kriging with the following properties:

1. Our Kriging preserves the monotonicity assumed for the I/O func-
tion implied by the underlying simulation model.

2. Our Kriging is not an interpolator ; i.e., its predictor for the n
old input combinations does not necessarily equal the n average
simulated outputs wi =

Pmi

r=1wi;r=mi (where mi still denotes the
number of replicates for input combination i, and i = 1; : : : ; n).

3. Our Kriging also gives a con�dence interval for the predictor.

4. Our Kriging is distribution-free; i.e., it does not assume normally
(Gaussian) distributed simulation outputs; all other authors on
Kriging assume normality, but our M/M/1 example will show that
this may be an unrealistic assumption.

5. Our Kriging accounts for variance heterogeneity, so var(wi) is an
(unknown) function of xi.
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As we mentioned under property 1, we assume that the I/O function
is monotonic. For example, in queuing simulation the analysts often
assume that the expected waiting time increases as the tra¢ c increases.
In medical research, the response is often assumed to be a monotonic
function of the medicine dose; see Frazier, Powell, and Dayanik (2009).
In regression analysis so-called �isotonic�regression and �rank�regression
may be used for monotonic I/O functions; see the references in Kleijnen
(2008, pp. 98, 162). Factor screening through sequential bifurcation
assumes a monotonic I/O function; applications are random simulation
of supply chains and deterministic simulation of the CO2 greenhouse
e¤ect; see the review by Kleijnen (2009).
Monotonicity-preserving Kriging implies that the estimated gradients

remain positive as the simulated tra¢ c rate increases. This monotonic-
ity preservation implies sensitivity analysis results that are understood
and accepted by the clients of the simulation analysts. Furthermore,
we conjecture that estimated gradients with correct signs will improve
simulation optimization. Moreover, we shall investigate whether our
monotonicity-preserving Kriging gives better predictions measured by
the Mean Squared Error (MSE), which is the standard criterion in Krig-
ing. Finally, we shall compare the estimated coverage and width of the
con�dence intervals based on our distribution-free bootstrapping and on
the classic (or standard) Kriging variance predictor.
Technically, we realize our Kriging (with the �ve properties listed

above) through distribution-free bootstrapping that we adapt for ran-
dom simulation. This bootstrapping is conceptually simple: it resamples�
with replacement� the replicated simulation outputs. It is computation-
ally inexpensive, compared with the computer time required by many
practical simulations; e.g., Simpson et al. (2004) give an example that
required 36 to 160 hours of computer time to obtain a single run for a
crash model at Ford; Ankenman et al. (2009) give more examples.
Note: Traditionally, bootstrapping is used to estimate the variability

of some statistic; e.g., Den Hertog, Kleijnen, and Siem (2006) estimate
the true variance of the Kriging predictor (accounting for the estimation
of the Kriging parameters) through parametric bootstrapping assum-
ing a Gaussian process for the deterministic simulation output. Our
bootstrapping, however, has a very di¤erent goal, namely monotonicity
preservation.
Our main conclusion is that our bootstrap Kriging gives con�dence

intervals with better coverage.
Note: If the simulation model is �nearly�deterministic, then there

are so few replicates that distribution-free bootstrapping gives too lit-
tle variation in the outputs and we resort to parametric bootstrapping
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assuming a Gaussian process.
The remainder of this article is organized as follows. Section 2 details

our monotonicity-preserving bootstrapped Kriging. Section 3 illustrates
this Kriging through the M/M/1 simulation model, focusing on termi-
nating simulation with either the average or the estimated 90% quantile
as output; these outputs are monotonically increasing functions of the
tra¢ c rate. Section 4 presents conclusions and topics for further re-
search.

2 Monotonicity-preserving Bootstrapped Kriging

As we mentioned above, in deterministic simulation Kriging is an inter-
polator :

y(xi) = w(xi) i = 1; : : : ; n (1)

where y denotes the Kriging predictor, w the simulation output, xi the ith

combination of the (say) k � 1 simulation inputs with i = 1; : : : ; n where
n denotes the number of �old�input combinations that have already been
simulated; outputs are predicted through the Kriging metamodel �tted
to the n I/O combinations. (x is a �point�in the k-dimensional exper-
imental space; the �inputs� are called �factors� in experimental design
theory.)
Random (stochastic) simulation (e.g., discrete-event simulation) gives

di¤erent outputs at xi whenever the PRN seed changes. We assume that
the simulation analysts obtain mi � 2 replicates; otherwise, they can-
not evaluate the variability of the simulation model�s output. Moreover
we assume that these replicates are IID, because they use nonoverlap-
ping PRN streams and the PRNs are assumed to be IID on the interval
(0; 1). The uncertainty caused by the PRN streams is called intrinsic
by Ankenman et al. (2009) and Kleijnen (2008, p. 18). These replicates
enable the following classic unbiased variance estimators:

s2i =

Pmi

r=1(wi;r � wi)2
mi � 1

with mi � 2: (2)

Alternative popular symbols for these estimators are s2(wi), \�2(wi), andb�2i . (If wi;r is Normally IID, then s2i has several well-known properties;
e.g., s2i (mi � 1) is �2mi�1 distributed.) Obviously s

2(wi) = s2(wi)=mi.
We assume that the simulation model is expensive so n (number of

simulated input combinations) and mi (number of replicates for com-
bination i) are so small that the �tted Kriging metamodel does not
necessarily preserve the monotonicity of the I/O function de�ned by the
underlying simulation model; an example is Figure 1, which we shall
discuss later on.
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Note: Kleijnen, Van Beers, and Van Nieuwenhuyse (2009) select mi

such that the sample average wi satis�es a relative precision require-
ment; i.e., they select mi such that the halfwidth of the (1 � �) con-
�dence interval for the average simulation output is within % of the
true mean (also see the classic simulation textbook, Law 2007, pp. 500-
503). Ankenman et al. (2009) mention a ratio related to signal/noise
that they call  = V=� 2. We recommend that if the analysts assume
monotonicity for the simulation model�s I/O function, then they obtain
so many replicates that the n average simulation outputs also show this
property. However, if the simulation model is expensive, then the ana-
lysts may not be able to follow our recommendation; our bootstrapped
Kriging procedure may then preserve the monotonicity.
Ankenman et al. (2009) introduce the term extrinsic uncertainty for

the approximation error that remains when �tting a Kriging model�
even if there were no �intrinsic uncertainty�(as is the case in deterministic
simulation). Those authors� and the other authors on the nugget e¤ect
mentioned in Section 1� assume that the intrinsic and extrinsic errors
are additive; our bootstrap does not need to make such an assumption.
Obviously, random simulation gives average outputs wi that are still

random; i.e., their observed realizations would change if the experiment
were repeated with di¤erent PRN seeds. Therefore we do not require
our Kriging predictor to equal the observed average outputs (whereas
we did in previous publications; see, e.g., Kleijnen et al. 2009 and Van
Beers and Kleijnen 2003).
A simple data-driven way to account for the intrinsic randomness

of wi;r is bootstrapping. There are two types of bootstrapping (see the
textbook by Efron and Tibshirani 1993, and the additional references
given by Kleijnen 2008, p. 81):

� Distribution-free (non-parametric) bootstrapping, which assumes
that all n old points are replicated �enough�times: mi >> 2 (in
the M/M/1 example, mi = 5).

� Parametric bootstrapping; e.g., we assume that the simulation
responses are normally distributed with parameters �i =E(wi) and
�2i estimated from the mi � 2 replicates (if we assumed constant
variances, then only one point would need to be replicated more
than once: 9i : mi � 2).

We focus on distribution-free bootstrapping, because we assume that
each point xi is replicated enough times. So we resample the mi repli-
cates per point xi, which gives the bootstrap observations w�i;r which in
turn give the average output wi� (the superscript � is the usual symbol
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for bootstrapped observations). (Obviously, parametric bootstrapping
assuming normality may give outputs between �1 and 1, whereas
distribution-free bootstrapping gives a smaller range of possible out-
puts.) The simulation outputs wi;r have di¤erent variances at di¤erent
points xi (e.g., the simulated steady-state mean waiting time has a vari-
ance that increases with the tra¢ c rate) so they are not IID.
We formalize our bootstrap procedure through the following pseudo-

code, assuming that no CRN are used (also see the last paragraph of
this section) and allowing a possibly non-constant number of replicates,
mi (i = 1; : : : ; n):

1. Initialize the input combination: i = 1:

2. Initialize the replicate number: r = 1.

3. Resample� with replacement� a replicate number r� from the uni-
form distribution de�ned on the integers 1; : : : ;mi; i.e., the uniform
density function is p(r�) = 1=mi with r� = 1; : : : ;mi.

4. Replace the rth �original� output wi;r by the bootstrap output
w�i;r = wi;r�.

5. If r < mi then r = r + 1 and return to Step 3; else proceed to the
next step.

6. If i < n then i = i + 1 and return to Step 2; else proceed to the
next step.

7. Compute the Kriging predictor y� from the bootstrapped I/O data
set (X;w�) where X denotes the n � k matrix with the n old
combinations of the k inputs and w� denotes the n-dimensional

vector with the averages wi� =
miP
r=1

w�i;r=mi and i = 1; : : : ; n.

To these bootstrapped I/O data (X;w�
i ), we �t an interpolating Krig-

ing model y�(analogous to (1)):

y�i = wi
� (i = 1; : : : ; n): (3)

We point out that we do not �t the Kriging model to an individual
output w�i;r because an individual output is noisier.
Kriging for deterministic simulation uses the extrinsic noise�s covari-

ance matrix �, de�ned below (17) in Appendix 1 with basic Kriging
formulas. This � depends on the correlation parameters �j de�ned be-
low (19), which are computed through Maximum Likelihood Estimation
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(MLE). Similar MLE is used by Ankenman et al. (2009) and Yin et
al. (2008). We also use MLE when we use the DACE toolbox. This
MLE assumes that the covariances follow a speci�c function� namely,
the Gaussian correlation function (19)� and assumes normality, whereas
we do not assume normality when bootstrapping; we accept this incon-
sistency because we use DACE�s MLE only to estimate the nuisance
parameters collected in �. (Van Beers and Kleijnen (2003) use Least
Squares instead of MLE, to estimate �.)
Because of the randomness in bootstrapping, the resampling is re-

peated (say) B times, where B is called the bootstrap sample size. So
(3) results in B bootstrapped Kriging predictors y�b = (y�1;b; : : : ; y

�
n;b)

0

with b = 1; : : : ; B. From these B predictors we select the (say) B0

monotonicity-preserving ones. Assuming a strictly monotonically in-
creasing I/O function, we select those B0 bootstrapped Kriging models
that are strictly monotonically increasing:

y�i;b0 < y
�
i0;b0 if xi < xi0 (i; i

0 = 1; : : : ; n) (b0 = 1; : : : ; B0) (4)

where xi < xi0 means that at least one component of xi is smaller than
the corresponding component of xi0 and none of the remaining compo-
nents is bigger. Obviously, we may de�ne �monotonically decreasing�
in a strictly analogous way. Notice that (4) implies that each of the k
components of the n gradients are positive; we denote this by

ry�i;b0 > 0 (i = 1; : : : ; n) (b0 = 1; : : : ; B0): (5)

These gradients are provided �for free�by DACE; see (18) in Appendix
1 and also Kleijnen (2008, p. 143).
Note: Monotonicity preservation of Kriging metamodels is also ex-

amined by Siem (2007), but he does not succeed in �nding a solution.
Velikova (2006) also discusses monotonicity, but she does so for neural
networks instead of Kriging. Feelders (2000) discusses monotonic classi-
�cation trees in data mining, using bootstrapping.
So there are B0 bootstrapped monotonicity-preserving Kriging pre-

dictors y�b0 (b
0 = 1; : : : ; B0). We use these predictors to compute B0

predictions y�t;b0 for (say) v new input combinations xu.(u = 1; : : : ; v).
So, we predict not a single new point xn+1 but v >> 1 new points; such
a test set was also used by Sacks et al. (1989). From the B0 predictions
for point t we compute as point estimate y�t;(0:50B0) where dxe denotes
the integer resulting from rounding x upwards and the subscript () de-
notes the order statistics; so y�u;(d0:50Bse) denotes the sample median (the
sample median is not sensitive to outliers, whereas the sample mean is;
quantiles such as the median will also be discussed in equation 9 for our
M/M/1 simulation).
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Note: Instead of the sample median y�u;(d0:50B0e) we may use the sam-
ple mean y�u =

P
y�u;b0=B

0� especially when using Kriging for optimiza-
tion that uses the resulting explicit function.
Besides this point estimator, we compute the lower and upper bound

of the (say) 90% con�dence interval for the bootstrapped Kriging predic-
tor for the true value at test point xu, namely y�u;(b0:05B0c) and y

�
u;(0:95B0)

where bxc denotes the integer resulting from rounding x downwards
(more re�ned procedures are discussed by Efron and Tibshirani 1993).
If B0 is too small to give a reasonable con�dence interval, we increase
the bootstrap sample size B; e.g., in our M/M/1 example we start with
B = 100 but augment B with 100 until either B0 � 100 or (to avoid
excessive computational time) B = 1000. The Kriging literature (e.g.,
Lophaven et al. 2002, p. 4 and Santner et al. 2003, p. 96) gives con�-
dence intervals, assuming normality and computing an estimate of the
variance b�2y of the classic predictor y that ignores the random character
of the Kriging weights resulting from estimating the parameters in the
Kriging correlation functions; see �j in (19) in Appendix 1; Den Hertog
et al. (2006) have already shown that this estimator was misleading in
several deterministic simulation examples, and so will we in our M/M/1
example.
Of course, a con�dence interval would have a perfect coverage of 100%

if its width were in�nite� but such an interval is useless. We therefore
estimate both the coverage and the width of the con�dence interval for
bootstrapped and classic Kriging� averaged over all � test points� in
our M/M/1 example in Section 3.
Ankenman et al. (2009) recommend not using CRN, because this

technique increases the MSE under their assumptions. We, however,
claim that the use of CRN should depend on the goal of the meta-
model, namely, sensitivity analysis and optimization (see again Section
1). Actually, these goals are related; e.g., the estimated gradient (a local
sensitivity measure) may be used to estimate the optimum. Ankenman
et al. focus on what-if analysis. Like Ankenman et al. we recommend
avoiding CRN, but for a di¤erent reason: CRN reduces the variability
of the bootstrapped simulation outputs averaged over the mi replicates,
whereas �nding a monotonicity-preserving bootstrapped Kriging model
is more likely when the bootstrapped averages have larger variability.
Our bootstrap procedure can be easily adapted for CRN; see Kleijnen
et al. (2009).

3 M/M/1 Example

In Section 3.1 we present some preliminary considerations for our M/M/1
simulation. In Section 3.2 we present results for our monotonicity-
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preserving Kriging in M/M/1 simulation.

3.1 Preliminaries
The M/M/1 queuing model is a popular example in random simulation;
e.g., Ankenman et al. (2009) use this example to illustrate their analy-
sis, and Law (2007, pp. 12-47, 79-83) details the single-server queuing
system, including the M/M/1 model.
In an M/M/1 simulation, the waiting time of customer t (say) wt

may be computed through

wt+1 = max(0; wt + st � at+1) t = 1; 2; : : : (6)

where w1 is determined by the initialization of the simulation run (e.g.,
if the simulation starts in the �empty�state, then w1 = 0); the exponen-
tially distributed inputs s and a have service rate � and arrival rate �
(the service rate is usually denoted by �, and should not be confused
with the mean service time E(s) = �s). To obtain sampled values for
these s and a, the simulation may use a single PRN stream p1; p2; : : : as
follows (but alternative sampling routines do exist):

st =
� ln p2t�1

�
and at+1 =

� ln p2t
�

: (7)

This simulation model is of practical interest because it is a building
block for more complicated queuing networks that are used in telecom-
munications, supply chains, etc. This model is also of academic interest
because it generates a time series of length (say) T so we have the vec-
tor w = (w1; : : : ; wT )0 (a positively correlated multivariate output); this
vector may be used in steady-state analysis, and has components with
non-constant variances (var(wt) increases as t increases, until the steady
state is reached). It is well-known that various performance measures
(see below) are nonlinear functions of the tra¢ c rate (or tra¢ c load)
x = �=�.
In our example we simulate this model starting not with w1 = 0

(the usual initialization of equation 6) but with w1 equal to its expected
steady-state value. The reason is that we are not interested in the prob-
lem of determining whether the simulation has reached steady state or is
still in transient state; i.e., we �cheat�and use the analytical solution for
the steady-state waiting time distribution for the M/M/1. In this way
we can verify some of our simulation results. (Ankenman et al. 2009 use
a similar trick.)
We study two performance measures:

1. the steady-state mean waiting time E(wtjt!1) = �w;
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2. the steady-state 90% quantile w:9 de�ned by P (wt � w:9jt!1) =
0:9.

The �rst measure is popular in academic research. The classic esti-
mator of this mean is the time-series average

w =

TP
t=1

wt

T
: (8)

The second measure is more popular in practice; see Batur and Choobineh
(2009), Hong (2009) and Jin, Fu, and Xiong (2003). To estimate a quan-
tile, we sort the (autocorrelated) time series from low to high� which
gives the (autocorrelated) order statistics w(1); : : : ; w(T ). A classic point
estimate of w:9 is cw:9 = w(d:9T e): (9)

To observe the sampling variability of the estimates of the mean and
90% quantile de�ned in (8) and (9), we use m � 2 replicates (alternative
approaches are discussed in the literature; see Law 2007, p. 506). Repli-
cate r (r = 1; : : : ;m) gives the average waiting time wr and the estimated
quantile dw:9;r. We expect these averages wr to be normally distributed
because of the Functional Limit Theorem; see Lehmann (1999). The
quantile estimators dw:9;r are only asymptotically normally distributed;
see Chen (2008) and Hong (2009). We (rather arbitrarily) select a �short�
runlength T = 1000 and a �long�length T = 100000 (Ankenman et al.
2009 select T = 1000 in a related example). Furthermore, in the prelim-
inary investigation reported in this subsection, we select only two tra¢ c
rates, namely, �=� = 0:5 and �=� = 0:9 (in the next subsection we use
more tra¢ c rates); a high tra¢ c rate gives stronger autocorrelation so
we expect nonnormality. In this subsection, we wish to obtain accurate
estimates of the true behavior of the simulated outputs, so we select
m = 1000 replicates (our Kriging results in the next subsection will use
smaller, realistic m values). We test the goodness of �t through the
chi-square and the Kolmogorov-Smirnov tests; also see (Law 2007, pp.
340-351). We present the resulting p-values for the latter test only, be-
cause the former test gives similar results; see Table 1. This table shows
that the estimated average and quantile are not normally distributed if
the simulation run is short (T = 1000)� even for a relatively low tra¢ c
rate (�=� = 0:5).
Note: The estimated mean may be larger than the estimated quantile

(w > cw:9), because the former statistic is sensitive to outliers. Indeed,
for low tra¢ c rates we sometimes observe this phenomenon.
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Runlength T = 1000 T = 100000
Tra¢ c rate �=� = 0:5 �=� = 0:9 �=� = 0:5 �=� = 0:9
Average w < 0:01 < 0:01 > 0:15 0:11
90% quantile cw:9 < 0:01 < 0:01 > 0:15 0:116

Table 1: Kolmogorov-Smirnov Test of Normality: p Values

To evaluate the performance of our procedure, we use the following
analytical results; see equation (2.21) in Gross and Harris (1998, p. 67).
The steady-state waiting time W in an M/M/1 model with tra¢ c rate
x = �=� has the distribution P (W � w) = 1 � x exp(��(1 � x)w).
This implies for the 90% quantile w:9: 1�x exp(��(1�x)w:9) = 0:9, so
w:9 = � ln (0:1=x) =�(1�x). The mean �w is x=[�(1�x)]. We select the
time units for the arrival and service times such that the service rate �
equals one.

3.2 Monotonicity-preserving Kriging Results
In practice, a small number of replicates m is used if a single simula-
tion run takes much computer time; nevertheless, m should be large
enough to obtain adequate signal/noise (see Kleijnen et al. 2009). The
signal/noise also depends on the runlength T . After some experimenta-
tion, we select T = 1000 and m = 5 for our example. Furthermore, we
select n = 5 values for the tra¢ c rate �=� (for higher n values, we do not
expect wiggly behavior so there is no need to bootstrap for monotonic-
ity preservation). We select these n points such that the tra¢ c rates
xi = �i=�i are inside the experimental area 0:1 � x � 0:9. We select a
bootstrap sample size B = 100; sometimes, this does not give enough
monotonicity-preserving Kriging models (so B0 < 100), so we bootstrap
another B = 100 times. We assume that the users are interested in ei-
ther the mean or the 90% quantile, so we bootstrap the estimated mean
and quantile independently (i.e., we do not resample the m correlated
pairs (wr;dw:9;r)).
Besides the n = 5 old points, we select v = 25 new points that are

to be predicted. We select these new points such that no extrapolation
is needed, because Kriging metamodels are known to be poor extrapo-
lators. To select these new points, we use Latin Hypercube Sampling
(LHS); for an explanation of LHS, references, and software see Kleijnen
(2008, p. 126-130).
To estimate whether our point predictor (the bootstrap median) for

the true output (say) � is better than the classic Kriging predictor y, we
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estimate the Integrated MSE through

\IMSE� =
Pv

u=1(y
�
u;(d0:50B0e) � �u)2

v
and \IMSE =

Pv
u=1(yu � �u)2

v
;

(10)
assuming that we know the true output �t� as is the case for the M/M/1
example. Notice that we use the same bootstrapped Kriging metamodel
to obtain point predictors for the v di¤erent test points.
To estimate whether our con�dence interval gives better coverage

than the classic Kriging con�dence interval does, we compute the indi-
cator function

I�u = 1 if y
�
u;(b0:05B0c) < �u < y

�
u;(d0:95B0e); else I

� = 0 (u = 1; : : : ; v) (11)

for our bootstrap procedure; for the classic procedure we compute

Iu = 1 if yu � 1:64b�yu < �u < yu + 1:64b�yu ; else I = 0 (u = 1; : : : ; v)
(12)

where b�yu is provided by the classic Kriging literature and software,
including DACE. We point out that� unlike our bootstrap con�dence
interval (11)� the classic interval (12) is symmetric around its point
estimate yt and may include negative values� even if negative values
are impossible, as is the case for waiting times. Analogously to (10) we
estimate the coverage averaged over all v test points:

I� =

Pv
u=1 I

�
u

v
and I =

Pv
u=1 Iu
v

: (13)

Note: The estimators in (13) are not binomially distributed; e.g., Iu
and Iu0 (u0 = 1; : : : ; v) are not independent because they use the same
estimated (�tted) Kriging model.
In our M/M/1 example, we obtain (say) L macro-replicates, which

di¤er only in their PRN seeds (in practice, the analysts obtain a single
macro-replicate). Let I�l denote the average indicator for our bootstrap
predictor in macro-replicate l, and Il the analogue for the classic predic-
tor; see (13). Our predictor then has the better coverage if the macro-
replicates give an average I� =

P
l I
�
l =L that is closer to the nominal

value 0:90 than the classic predictor�s I =
P

l Il=L. We obtain 100
macro-replicates so L = 100 (Ankenman et al. also use L = 100). From

these L macro-replicates we estimate the mean IMSE through \IMSE
and the standard error s(\IMSE) to obtain the following 90% con�-
dence interval for the IMSE of the classic Kriging and our monotonicity-
preserving bootstrap approach:

\IMSE � 1:64s(
\IMSE)p
L

and \IMSE� � 1:64s(
\IMSE�)p
L

13



where

\IMSE =

LP
l=1

\IMSEl

L
and s(\IMSE) =

vuuut LP
l=1

( \IMSEl � \IMSE)2

L� 1 ;

and the formulas for the bootstrap results are analogous. For the cover-
age we use analogous equations:

I � 1:64s(I)p
L
and I� � 1:64s(I

�)p
L

where

I =

LP
l=1

Il

L
and s(I) =

vuuut LP
l=1

(Il � I)2

L� 1 ;

etc. The formulas for the lengths of the con�dence intervals are analo-
gous.
In some macro-replicates the classic Kriging metamodels are monotonic,

so there is no need to bootstrap. To check whether a classic Kriging
metamodel gives a monotonic I/O function, we check whether all the
gradients estimated at the n old points are positive: 8i : ryi � 0
(i = 1; : : : ; n); also see (5). If a macro-replicate satis�es this condition,
then we sample a new macro-replicate; we stop after we have L = 100
macro-replicates with nonmonotonic classic Kriging metamodels.
Figure 1 shows a macro-replicate in which the classic Kriging meta-

model shows wiggling, whereas a bootstrapped model is monotonic. This
�gure also shows� for each of the n = 5 input values� the m = 5 repli-
cated simulation outputs (see dots) and their averages (see stars). Fur-
thermore, the �gure shows the analytical (dotted) I/O curve. Notice
that for low tra¢ c rates the variability of the individual simulation out-
puts is so small that this variability is hardly visible; nevertheless, the
bootstrap �nds a monotonic Kriging model. (The data of all �gures in
this article, and the corresponding Matlab code are available from the
authors.)
Wiggling means that the derivative dby=dx is negative for at least one

x value in the area of interest. Wiggling may also occur at new points
(besides the old points; see Fig. 1). In the M/M/1 example (which has a
single input), we check whether Kriging gives wiggling at 100 new points,
spread uniformly across the experimental range. (In applications with
multiple inputs, however, such a grid search is rather expensive, so we
may �nd the x point that minimizes the components of the estimated
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gradient rby; if at least one component is negative, then the Kriging
predictor by shows wiggling so we apply bootstrapping.)
Note: We also experiment with Universal Kriging replacing the con-

stant term � in Ordinary Kriging by a �rst-order and a second-order
polynomial respectively (see Appendix 1, last paragraph). This Uni-
versal Kriging, however, does not remove the wiggling so we focus on
Ordinary Kriging.
Figure 2 gives the IMSE for the average and the 90% quantile es-

timated from these L = 100 macro-replicates; the symbol �KA�stands
for �Kriging the Average�, �BQ�for �Bootstrap the Quantile�, etc. This
�gure shows that our bootstrap gives smaller estimated IMSEs, albeit
not signi�cantly smaller; of course, the 90% quantile has larger IMSEs
than the mean has. Classic Kriging uses the MSE as the criterion when
optimizing the Kriging weights �; when we impose the monotonicity
constraint, we do not expect signi�cantly lower MSE.
Figure 3 gives the estimated coverage for the average and the 90%

quantile. This �gure shows that our bootstrap gives signi�cantly higher
estimated coverage for the mean and the quantile. Unfortunately, all
estimated coverages are signi�cantly lower than the nominal value of
90%.
Figure 4 gives the corresponding estimated widths. This �gure shows

that our bootstrap gives widths that are not signi�cantly shorter; see the
point estimate. The variability of the width is smaller for our bootstrap;
see the length of the con�dence interval for the width. Together the
latter two �gures show that our bootstrap gives better coverage without
lengthening the con�dence interval.

Because the coverage is signi�cantly lower than the prespeci�ed nom-
inal value of 90%, we compare Kriging with classic linear regression
metamodeling; i.e., we repeat our experiment with second-order polyno-
mial metamodels. Because the variances of the simulation outputs vary
with the input combination, we adapt Ordinary Least Squares (OLS) as
explained in Kleijnen (2008, p. 95) and Appendix 2. This gives cover-
ages for the mean and the quantile that are lower than Kriging (classic
or bootstrapped) does. The variability of the coverage (measured by the
length of the con�dence interval for the estimated coverage) is smaller
for the second-order polynomial; we think that this phenomenon arises
because in this metamodel only the three regression coe¢ cients may
vary. Details are displayed in Table 3 in Appendix 2.
Finally, we increase n (number of old points) from 5 to 10; see Table

2. Remember that we limit our analysis to the L = 100macro-replicates
that show nonmonotonic classic Kriging metamodels. This table shows
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Figure 1: Nonmonotonic Classic and Monotonic Bootstrapped Kriging
metamodels and True I/O Function for M/M/1 Example with n = 5, m
= 5, T =1000
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Figure 2: Estimated IMSE of Nonmonotonic Classic and Monotonic
Bootstrapped Kriging for the Mean and 90% Quantile, for n = 5, m =
5, T = 1000
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Figure 3: Coverage of Nonmonotonic Classic and Monotonic Boot-
strapped Kriging for the Mean and 90% Quantile, for n = 5, m = 5, T
= 1000
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Figure 4: Width of Con�dence Interval for Nonmonotonic Clasic and
Monotonic Bootstrapped Kriging for the Mean and 90% Quantile, for n
= 5, m = 5, T = 1000
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lower bound median upper bound
coverage KA 0.226 0.353 0.449
coverage BA 0.831 0.845 0.858
coverage KQ 0.331 0.442 0.552
coverage BQ 0.830 0.844 0.859
width KA 0.233 0.306 0.379
width BA 0.371 0.382 0.392
width KQ 1.023 1.047 1.070
width BQ 0.948 1.208 1.477

Table 2: Coverage in Classic Nonmonotonic Kriging (K) and Boot-
strapped Monotonic Kriging (B), for the Average (A) and the 90%Quan-
tile (Q), for n = 10, m = 5, T = 1000

that a larger number of input combinations increases the estimated cov-
erages for both classic Kriging and bootstrapped Kriging; we think that
this phenomenon is explained by the better �t of the metamodels. These
coverages are close to the nominal 90% for our bootstrapped Kriging,
whereas classic nonmonotonic Kriging still gives coverages far below the
desired nominal value. The improved coverage of bootstrapped Kriging
does not require signi�cantly longer con�dence intervals.

4 Conclusions and Future Research

In practice, simulation may be computationally expensive, so only a
few input combinations are simulated and these few combinations are
replicated only a few times (small n and m). Classic Kriging may then
give wiggly, nonmonotonic metamodels. In such cases, our monotonicity-
preserving Kriging gives better results; namely, better coverage without
longer con�dence interval.
As the number of replicates m increases, the original and the boot-

strapped average simulation outputs converge to the true value, so the
original and the bootstrapped Kriging metamodel tend to be monotonicity-
preserving. However, in all our 100 macro-replicates with only m =
5 replicates, we did �nd several monotonicity-preserving bootstrapped
Kriging models, whereas the original Kriging model was erratic.
Unfortunately, a small number of simulated input combinations n

may give too little information to estimate a Kriging model (classic or
monotonicity-preserving) that gives the desired coverage. In such sit-
uations we would advise the analysts to spend more computer time in
order to obtain reliable results. While awaiting these results, they can
bootstrap the too small sample to obtain results that are better than
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the classic results.
In future research we may investigate the following topics.

� Our monotonicity-preserving bootstrap procedure may be applied
to more complicated simulation models with more than one input.

� Our procedure may also be applied to the stochastic Kriging meta-
models proposed by Ankenman et al. (2009) and Yin et al. (2008)
instead of the classic metamodel assumed by the DACE software.

� Our procedure may be used to select a sequential experimental
design (involving the stagewise selection of the number of points
n and their placement in the k-dimensional input space, and the
number of replicatesmi at each point); see Ankenman et al. (2009)
and Kleijnen and Van Beers (2004).

� We may also study bootstrapped Kriging that preserves the know
shape (monotonicity, convexity, nonnegativeness) of the underly-
ing I/O function, which may be known or assumed in simulation
optimization.

Appendix 1: Basic Kriging Formulas
Ordinary Kriging assumes

w(x) = �+ �(x) (14)

where � is the simulation output averaged over the experimental area,
and �(x) is the additive external noise that forms a stationary covariance
process with zero mean. For random simulation, a more suitable Kriging
model augments (14) with an additive internal noise term, which is white
noise (say) �(x) that is independent of �(x):

w(x) = �+ �(x) + �(x): (15)

Ordinary Kriging uses the linear predictor

y = �0w (16)

with the optimal weights

�o= �
�1[ + 1

1� 10��1
10��11

] (17)

where � = (cov(wi; wi0)) with i; i0 = 1; : : : ; n is the n � n symmetric
and positive semi-de�nite matrix with the covariances between the n
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�old�outputs, and  =(cov(wi; w0)) is the n-dimensional vector with the
covariances between the n old outputs wi and w0, the output of the com-
bination to be predicted� which may be either new or old. Combining
(14), (16), and (17) gives

y = b�+ 0��1(w�b�1) (18)

where b� = (10��11)�110��1w. The correlation function for a k-dimensional
input vector is assumed to be the product of k one-dimensional functions
�j (j = 1; : : : ; k); a popular one-dimensional correlation function is the
Gaussian one:

�j = exp[��jh2j ] (19)

where hj = jxi;j � xi0;jj denotes the Euclidean distance between the val-
ues of the input j in the two input combinations i and i0; �j denotes the
importance of input j; i.e., the higher �j is, the less e¤ect input j has.
An alternative for Ordinary Kriging is Universal Kriging, which replaces
the constant � in (14) by a linear combination of known functions; e.g.,
a low-order polynomial; see Cressie (1993, p. 151) and Lophaven et al.
(2002, p. 13). Ordinary Kriging is recommended by most authors (but
not all; see Blind Kriging by Joseph, Hung, and Sudjianto 2008).

Appendix 2: Basic Linear Regression Formulas
In our linear regression we assume

y(x) =
qP
j=1

�jxj + �(x) = x
0�+�(x) (20)

where xj is the jth explanatory regression variable, x = (x1; : : : ; xq)
0,

� = (�1; : : : ; �q)
0 is the vector of regression parameters, and �(x) is

the additive noise with zero mean and variances that may vary with x;
because we do not use CRN, the noise terms at di¤erent points are inde-
pendent. Because the variances of the simulation output are unknown,
we proceed as follows (Kleijnen 2008, pp. 87-91 gives more alterna-
tives). We use OLS to estimate � from the bootstrapped outputs w�

b

(b = 1; : : : ; B) with bootstrap sample size B ( we select B = 100 in our
experiment): c��b = (X0X)�1X0w�

b (b = 1; : : : ; B)

where X is the n� q matrix of explanatory variables in the n simulated
combinations:The corresponding regression predictor for point xu is

cy�u;b = qP
j=1

c��j;bxj;u = x0uc��b (u = 1; : : : ; �):
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lower bound median upper bound
KA 0.150 0.192 0.234
BA 0.454 0.503 0.552
PA 0.160 0.173 0.186
KQ 0.204 0.251 0.298
BQ 0.339 0.365 0.391
PQ 0.183 0.194 0.206

Table 3: Coverage in Nonmonotonic Classic Kriging (K) and Monotonic
Bootstrapped Kriging (B), and Polynomial Regression (P), for the Av-
erage (A) and the 90% Quantile (Q), ), for n = 5, m = 5, T = 1000

Our corresponding 1� � con�dence interval for the true output �u is

\y�u;(b0:05Bc) < �u < \y�u;(d0:95Be):

Note: The known shape of the polynomial regression model may be
preserved through semide�nite programming and real algebraic geome-
try; see Siem, de Klerk, and den Hertog (2008).
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