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Definition and Basic Properties of GPs

A stochastic process, Y (x), x ∈ X ⊂ <d with underlying probability
space (Ω,B,P), is a Gaussian process (GP) if, for any
x1, . . . , xn, n ≥ 1 in X , the joint distribution of the vector
Y = (Y (x1) , . . . ,Y (xn))> has a multivariate normal distribution

Y ∼ Nn (µ,C) ,

where µ = (µ (x1) , . . . , µ (xn))>, and C is an n× n covariance matrix
created by a (valid) covariance function,
C (x, x′) = Cov (Y (x) ,Y (x′)), such that Cij = Cov (Y (xi ) ,Y (xj)).

A GP is fully specified by its mean function, µ(x) = E (Y (x)), and its
(valid) covariance function.

It is also common to work with (valid) correlation functions,
R (x, x′) = Cor (Y (x) ,Y (x′))

Casey B. Davis (OSU) Bayesian CGP February 20, 2014 3 / 40



Common Correlation Functions

The power exponential family has the form

R(h) = exp

− d∑
j=1

θj |hj |pj

 , 0 < pj ≤ 2 and θj > 0, j = 1, . . . , d .

A special case of the power exponential family is when
pj = 2, j = 1, . . . , d . This is the Gaussian correlation function

R(h) = exp

− d∑
j=1

θjh
2
j


The Gaussian correlation function leads to smooth sample paths that
are continuous and infinitely differentiable.
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Properties of GPs

A covariance funtion is stationary if, for any translation h ∈ <d such
that x + h, x′ + h ∈ X ,C (x, x′) = C (x + h, x′ + h).

A GP is stationary if, for any x1, . . . , xn, n ≥ 1 in X , and any
translation h ∈ <d such that x1 + h, . . . , xn + h ∈ X ,
(Y (x1) , . . . ,Y (xn))> and (Y (x1 + h) , . . . ,Y (xn + h))> have the
same mean vector and covariance matrix.

In this case, Var (Y (x)) = σ2 ∀ x ∈ X . Then C (·, ·) = σ2R(·, ·).
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Properties of GPs

A GP is nonstationary if either the mean function is not constant or
the covariance function is nonstationary.

A common technique for generating a nonconstant mean function is
to let the mean depend on x much like a regression model. This
process has the form

Y (x) =

p∑
i=1

fi (x)βi + Z (x) = f>(x)β + Z (x),

where f(x) = (f1(x), . . . , fp(x))> is a vector of known regression
functions, β = (β1, . . . , βp)> is a vector of unknown regression
coefficients, and Z (x) is a zero-mean stationary Gaussian process.

A GP may also be nonstationary if the covariance between two
locations depends not only on the orientation and distance between
the points, but on the location of the points in X .
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Example of a Stationary GP vs. a Nonstationary GP
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Figure : This figure shows 10 draws from each of a stationary GP and
nonstationary GP, along with the values of Y (0.2) and Y (0.5) and Y (0.5) and
Y (0.8) plotted against each other for 400 draws from each process.
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Bayesian Approaches to Modeling the Mean Function

A fully Bayesian approach to modeling with Gaussian processes
involves setting a prior for the mean function, µ(x), assuming a
covariance function, C (x, x′), and assuming priors for the
hyperparameters involved in C (·, ·).

A mean function is often specified as a constant, µ(x) = µ, or a linear
model

µ(x) = f>(x)β,

where f(x) = (f1(x), . . . , fp(x))> is a vector of known regression

functions and β = (β1, . . . , βp)> is a vector of unknown coefficients.

The priors on the parameters in this mean function are usually an
improper uniform or a normal distribution.
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Bayesian Approaches to Modeling the Correlation Function

A covariance function must be assumed. Often, the Gaussian
correlation function is assumed because of its smoothness properties.

In this case the correlation parameters are often given Gamma priors.

Improper priors on the correlation parameters often produce and
improper posterior distribution.

If the Gaussian correlation function is stationary (C (·, ·) = σ2R(·, ·)),
then σ2 is often given an Inverse Gamma prior.
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Computational Methods

Inferences are made using the posterior distribution, (· | y), where
y = (y (x1) , . . . , (xn))> is the observed training data.

When the posterior is difficult to work with directly, Markov Chain
Monte Carlo (MCMC) methods can be used to sample from the
posterior.

The inversion of the n × n covariance matrix of the training data, C,
causes problems, particularly from being ill-conditioned (oftentimes
overcome by adding a small nugget, σ2

ε , to the diagonal elements) or
from being large (it is computationally expensive to invert a large
matrix).
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Nonstationary GPs

Stationary GP models are fairly common, even when they are not
appropriate.

Stationarity is often a strong assumption to make. It is not
uncommon for the mean and/or the variance to change throughout
the input space.

A nonstationary GP allows for one or both of the mean and
covariance to vary across the input space, X ⊂ <d , where d is the
number of dimensions of x.
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Specification and Prediction for the Regression plus
Stationary GP Model

A common method for specifying a nonstationary GP is

Y (x) =

p∑
i=1

fi (x)βi + Z (x) = f>(x)β + Z (x),

where f(x) = (f1(x), . . . , fp(x))> is a vector of known regression
functions, β = (β1, . . . , βp)> is a vector of unknown regression
coefficients, and Z (x) is a zero-mean stationary GP.

The best linear unbiased predictor is

ŷUK (x∗) = f>∗ β̂ + r> (x∗) R−1(y − Fβ̂),

where F = (f(x1), . . . , f(xn))>, f∗ = (f1(x∗), . . . , fp(x∗))> ,R is a
correlation matrix for the training data,

r(x∗) = (R(x∗ − x1), . . . ,R(x∗ − xn))> , β̂ =
(
F>R−1F

)−1
F>R−1y,

the usual generalized least squares predictor.
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Example of the Regression plus Stationary GP Model
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Figure : This figure shows an example of the regression plus GP approach.
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Strenths and Weaknesses of the Regression plus Stationary
GP Model

Strengths:

This model allows for a nonstationary mean.

A correctly specified trend can make predictions accurate.

Relatively easy computationally.

Weaknesses:

This model does not allow for a nonstationary covariance.

The correct trend is generally unknown. A wrongly specified trend
can make for very bad predictions.
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CGP Description

The CGP model allows for a flexible, non-constant mean and a
nonstationary covariance.

This model involves two processes, a “global” process and a local
“process,” and a “volatility function.”

The global process is smooth and stationary and captures the overall
trend. It acts as the mean of the process. The local process makes
local adjustments to the overall trend.

The volatility function allows the volatility of the local process to
change throughout the input space.

Casey B. Davis (OSU) Bayesian CGP February 20, 2014 15 / 40



CGP Model

Given the process parameters, Λ, the CGP model is expressed as a
sum of two Gaussian processes as follows:

Y (x) = Yg (x) + σ(x)Y`(x)

[Yg (x) | Λ] ∼ GP(µ, τ2g(·))

[Y`(x) | Λ] ∼ GP(0, `(·)),

where g(·) and `(·) are Gaussian correlation functions with unknown
correlation parameters θ and κ. Without loss of generality, write
σ2(x) = σ2v(x).

Yg (x) is the global process, Y`(x) is the local process, and v(x) is the
volatility function.

Yg (x) and Y`(x) are independent.
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CGP Prediction

The best linear unbiased predictor of Y (x∗) given the observed training
data y = (y (x1) , . . . , y (xn))> is

ŷCGP(x∗) = µ̂+ C>∗ C−1(y − µ̂1)

= µ̂+
(

g(x∗) + λv 1/2(x∗)V1/2`(x∗)
)> (

G + λV1/2LV1/2
)−1

× (y − µ̂1)

where λ = σ2

τ2 ∈ [0, 1], V = diag{v(x1), . . . , v(xn)}, and

µ̂ =

(
1>
(

G + λV1/2LV1/2
)−1

1

)−1

1>
(

G + λV1/2LV1/2
)−1

y.
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CGP Prediction

This predictor can be broken into two pieces:

ŷCGP(x∗) = ŷg (x∗) + ŷ`(x∗),

ŷg (x∗) = µ̂+ g>(x∗)
(

G + λV1/2LV1/2
)−1

(y − µ̂1)

ŷ`(x∗) = λv 1/2(x∗)`>(x∗)V1/2
(

G + λV1/2LV1/2
)−1

(y − µ̂1).

ŷg (x∗) can be thought of as a “global” predictor and ŷ`(x∗) can be
thought of as a “local” predictor.
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CGP Examples

Figure : This figure shows three plots of some non-stationary functions (black),
along with training data for each, an overall prediction (red), and a prediction of
the global trend (blue).
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Strengths and Weaknesses of the CGP Model

Strengths:

Allows both the mean and covariance structure to vary throughout
the input space.

The correlation matrix is automatically well-conditioned due to the
fact that the diagonal elements are automatically inflated.

Does not require the addition of a “nugget,” and so remains an
interpolator.

Weaknesses:

Does not handle noisy data well.

Does not utilize prior knowledge about the process.
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Nonstationary BCGP Description

The nonstationary BCGP model allows for a flexible, non-constant
mean and a nonstationary covariance.

This model involves three processes, a “global” process, a local
“process,” and an “error” process.

The global process is smooth and stationary and captures the overall
trend. It acts as the mean of the process. The local process makes
local adjustments to the overall trend. The error process allows for
measurement error.

The variance of the process changes throughout the input space.
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Nonstationary BCGP Model

This model treats the deterministic function, y(x), as a realization of
a Gaussian process, Y (x). The model is as follows:

[Y (x) | Λ] ∼ GP(µ,C (·, ·)),

where Λ = (µ,w ,θ,κ, σ2
ε , φ(·), µV ,θV )>, µ is an overall mean, and

the covariance function is

C (Y (x),Y (x′)) =


√
φ(x)φ(x′)(wg(x− x′)+

(1− w)`(x− x′)) , x 6= x′

φ(x)(1 + σ2
ε ) , x = x′

.

φ (x) is a positive function that allows the variance to change
throughout the input space, and the other parameters are the same as
in the stationary model.
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An Equivalent Model Description

The model may be rewritten as follows:

Y (x) = Yg (x) + Y`(x) + Yσ2
ε
(x)

where Yg (x) is a mean µ Gaussian process with covariance

Cg (Yg (x),Yg (x′)) =

{ √
φ(x)φ(x′)wg(x− x′) , x 6= x′

φ(x)w , x = x′
,

Y`(x) is a mean 0 Gaussian process with covariance

C`(Y`(x),Y`(x′)) =

{ √
φ(x)φ(x′)(1− w)`(x− x′) , x 6= x′

φ(x)(1− w) , x = x′
,

and Yσ2
ε
(x) is a mean zero Gaussian (white noise) process and

covariance

Cσ2
ε
(Yσ2

ε
(x),Yσ2

ε
(x′)) =

{
0 , x 6= x′

φ(x)σ2
ε , x = x′

,

where Yg (x),Y`(x), and Yσ2
ε
(x) are mutually independent.
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Nonstationary BCGP Model Priors

The priors for this for this model will be assumed to be:

p(µ) ∝ 1

w ∼ Truncated Beta(a, b, ξ, ψ)

κi ∼ Gamma(γi , ηi ), κ1, . . . , κd mut. indep.

θi | κi ∼ Truncated Beta(0, κi , νi , ωi ), θ1, . . . , θd mut. indep.

σ2
ε ∼ Gamma(δ, λ)

Log φ(x) | µV ,θV ∼ GP(µV , gθV (·))

µV ∼ N(µµV , σ
2
µV

)

θVi
∼ Gamma(αθVi , βθVi ), θV1 , . . . , θVd

mut. indep.
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Examples of Draws from This Process
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Figure : This figure shows two different fixed φ(x) functions and six draws from
this process for each w ∈ {0.5, 0.75, 1}.
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An Example Showing Y (x) as the Sum of the Global,
Local, and Error Processes
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Figure : This figure shows a draw from the process (blue) with two different fixed
φ(x) functions for each w ∈ {0.5, 0.75, 1}, along with the global (green), local
(red), and error (cyan) processes.
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Computational Methods

The posterior distribution is used to make inferences. Let

Λ =
(
µ,w ,θ,κ, σ2

ε ,V, µV ,θV
)>

, where V = (φ(x1), . . . , φ(xn))>.

[Λ | y] =
[y | Λ] [Λ]

[y]

∝ [y | Λ] [Λ]

= [y | Λ] [µ] [w ]
[
σ2
ε

] d∏
i=1

[θi | κi ] [κi ] [V | µV ,θV ] [µV ]
d∏

i=1

[θVi
]

However, this posterior distribution is difficult to work with directly.
In particular, it is difficult to integrate over this posterior distribution.

Use MCMC to sample from the posterior.

Casey B. Davis (OSU) Bayesian CGP February 20, 2014 27 / 40



Point Predictions

This process is a Gaussian process. The joint distribution of Y (x∗)
and Y also follows a multivariate normal distribution as follows:[(

Y (x∗)
Y

)
| Λ
]
∼ N1+n

[(
µ
µ1

)
,

(
φ(x∗)(1 + σ2

ε ) C>∗
C∗ C

)]
,

A Rao-Blackwellized minimum mean squared prediction error (MSPE)
point prediction for y(x∗) given the data is

ŷBCGP(x∗) = E (Y (x∗)|y)

= EΛ|y(E (Y (x∗)|y,Λ))

= EΛ|y

(
µ+ C>∗ C−1(y − µ1)

)
≈ 1

nmcmc

nmcmc∑
i=1

(
µ[i ] + C

[i ]>
∗ C[i ]−1

(y − µ[i ]1)
)
,

where nmcmc is the number of draws taken from the posterior [Λ | Y].
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Equivalent Model Point Predictions

The MSPE predictor for the equivalent model can be shown to be:

ŷ(x∗) = E (Y (x∗)|y)

= EΛ|y(E (Y (x∗)|y,Λ))

≈ 1

nmcmc

nmcmc∑
i=1

(
ŷ

[i ]
g (x∗) + ŷ

[i ]
` (x∗) + ŷ

[i ]
σ2
ε
(x∗)

)
where

ŷg (x∗) = µ+ C>g∗C−1(y − µ1)

ŷ`(x∗) = C>`∗C−1(y − µ1)

ŷσ2
ε
(x∗) = C>σ2

ε∗
C−1(y − µ1)

Casey B. Davis (OSU) Bayesian CGP February 20, 2014 29 / 40



Strengths and Weaknesses of the BCGP Model

Strengths:

Allows both the mean and covariance structure to vary throughout
the input space.

Can be a near-interpolator for deterministic data by setting the priors
on the nugget so that the nugget will always be small.

Can handle noisy data by setting the priors on the nugget accordingly.

Can utilize prior knowledge about the process.

Weaknesses:

The priors on the correlation parameters can be difficult to specify.

When the number of dimensions is large, the MCMC algorithm can
be time-consuming.

Currently, the software requires manual calibration of the proposal
widths.
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Interpolation: Example 1
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Figure : Plots of the function y(x) = sin
(
30(x − 0.9)4

)
cos (2(x − 0.9)) + (x−0.9)

2
with the training data and the BCGP and CGP global(blue) and overall(red)
predictors.
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Interpolation: Example 2
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Figure : Plots of the function y(x) = e−2xsin(4πx2) with the training data and
the BCGP and CGP global(blue) and overall(red) predictors.
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Interpolation: Example 3
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Figure : Plots of the true function y(x) = sin(10πx)
2x + (x − 1)4 with the training

data and the BCGP and CGP global(blue) and overall(red) predictors.
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Interpolation: Example 4
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Figure : Plots of the Franke function and the 24-run maximin Latin hypercube
design, the BCGP and CGP predictors, and their respective error plots.
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Extrapolation: Example 1
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Figure : Plots of the function y(x) = sin
(
30(x − 0.9)4

)
cos (2(x − 0.9)) + (x−0.9)

2
for x ∈ [0, 1.75] with the training data and the BCGP and CGP global(blue) and
overall(red) predictors.

Casey B. Davis (OSU) Bayesian CGP February 20, 2014 35 / 40



Extrapolation: Example 2
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Figure : Plots of the function y(x) = e−2xsin(4πx2) for x ∈ [0, 4] with the
training data and the BCGP and CGP global(blue) and overall(red) predictors.
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100 Draws from a Stationary Process Using Relatively
Uninformative Priors
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Figure : MSPEs of the two predictors for 100 draws from a stationary process,
along with two example draws. The priors on w , θ, κ, and θV were given the
default parameters, making the priors relatively uninformative.
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100 Draws from a Stationary Process Using Relatively
Informative Priors
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Figure : MSPEs of the two predictors for 100 draws from a stationary process,
along with two example draws. The priors on w , θ, and κ were specified so that
the ranges of likely values for w , θ, and κ are very narrow.
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Example with Noisy Data
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Figure : Plots of the true function with the training data and the BCGP and CGP
global(blue) and overall(red) predictors.
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Thank You
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