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Calibration Assumptions

Let X ⊂ Rd open and bounded.

(i) A natural process y(·) is a deterministic map from X → R . There
exist some k ∈ N so that D(α)y(·) exists and is bounded for all Rd

vectors of non-negative integers α so that ‖α‖L1 ≤ k .

(ii) A computer model f (·, ·) is a deterministic map from X × R→ R
where D(α,0)f (·, ·) exists and is bounded.

(iii) There exists a mapping L from the space of k differentiable functions
defined on X to R so that there is some θ ∈ Θ so that

L(y(·)− f (·, θ)) < L(y(·)− f (·, t))

for any t ∈ Θ, t 6= θ
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Model Bias

Define the model bias as

zθ(x) := y(x)− f (x , θ).

Notice the bias is indexed by the ‘true’ or ‘best’ value of θ possible. So,

y(x) = f (x , θ) + zθ(x).
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Bayesian Model

Suppose we have observations Y = Y1, . . . ,Yn corresponding to inputs
x = x1, . . . , xn corrupted by some iid additive gaussian noise ε1, . . . , εn. i.e.

Yi (xi ) = z(xi ) + εi = f (xi , θ) + zθ(xi ) + εi ,∀i = 1, . . . , n.

So given,

Yi |zθ(xi ), θ
iid∼ N(f (xi , θ) + zθ(xi ), v)

zθ(·)|θ ∼ GP(0, σ2rθ(x , x ′))

θ ∼ π(θ)

we can find

π(θ|Y ) ∝
∫
Rn

π(Y|zθ(x))π(zθ(x)|θ)π(θ)d(zθ(x))

π(zθ(x0)|Y ) =

∫
Θ
π(zθ(x0)|θ)π(θ|Y)dθ

James Matuk (STAT 8750.02) Calibration of Inexact Computer Models March 5, 2018 5 / 17



Bayesian Model

Suppose we have observations Y = Y1, . . . ,Yn corresponding to inputs
x = x1, . . . , xn corrupted by some iid additive gaussian noise ε1, . . . , εn. i.e.

Yi (xi ) = z(xi ) + εi = f (xi , θ) + zθ(xi ) + εi ,∀i = 1, . . . , n.

So given,

Yi |zθ(xi ), θ
iid∼ N(f (xi , θ) + zθ(xi ), v)

zθ(·)|θ ∼ GP(0, σ2rθ(x , x ′))

θ ∼ π(θ)

we can find

π(θ|Y ) ∝
∫
Rn

π(Y|zθ(x))π(zθ(x)|θ)π(θ)d(zθ(x))

π(zθ(x0)|Y ) =

∫
Θ
π(zθ(x0)|θ)π(θ|Y)dθ

James Matuk (STAT 8750.02) Calibration of Inexact Computer Models March 5, 2018 5 / 17



Bayesian Model

Suppose we have observations Y = Y1, . . . ,Yn corresponding to inputs
x = x1, . . . , xn corrupted by some iid additive gaussian noise ε1, . . . , εn. i.e.

Yi (xi ) = z(xi ) + εi = f (xi , θ) + zθ(xi ) + εi ,∀i = 1, . . . , n.

So given,

Yi |zθ(xi ), θ
iid∼ N(f (xi , θ) + zθ(xi ), v)

zθ(·)|θ ∼ GP(0, σ2rθ(x , x ′))

θ ∼ π(θ)

we can find

π(θ|Y ) ∝
∫
Rn

π(Y|zθ(x))π(zθ(x)|θ)π(θ)d(zθ(x))

π(zθ(x0)|Y ) =

∫
Θ
π(zθ(x0)|θ)π(θ|Y)dθ

James Matuk (STAT 8750.02) Calibration of Inexact Computer Models March 5, 2018 5 / 17



Loss Functions

Defining a loss function adds some additional structure to the problem.

(i) LL2(y(·)− f (·, t)) =
∫
X (y(ξ)− f (ξ, t))2dξ

(ii) LL2(µ)(y(·)− f (·, t)) =
∫
X (y(ξ)− f (ξ, t))2dµ(ξ)

(iii) LW 2
k

(y(·)− f (·, t)) =
∑
‖α‖L1≤k ‖D

(α)y(·)− D(α,0)f (·, t)‖2
L2

(iv) LW 2
k (µ)(y(·)− f (·, t)) =

∑
‖α‖L1≤k ‖D

(α)y(·)− D(α,0)f (·, t)‖2
L2(µ)

The choice of loss (i) - (iv) will depend on the application and the
information available.
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LL2 Example

The implications of assumptions (i) - (iii) and choice of loss function is
that the bias should be orthogonal to the the the gradient of the computer
model.

Consider,

LL2(y(·)− f (·, t)) =

∫
X

(f (ξ, θ) + zθ(ξ)− f (ξ, t))2dξ.

(Theorem 1 of [1]) Assuming all regularity conditions to exchange
differentiaton and integration, then using standard optimality conditions
one should enforce the following constraint∫

X
D(0,1)f (ξ, θ)zθ(ξ)dξ = 0.
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General Orthogonality Condition

(Theorem 2 of [1]) For the most general loss considered,

LW 2
k

(y(·)− f (·, t)) =
∑

‖α‖L1≤k

‖D(α)y(·)− D(α,0)f (·, t)‖2
L2 ,

under regularity conditions, one should enforce the following constraint,∑
‖α‖L1≤k

∫
X
D(α,1)f (ξ, θ)D(α,0)zθ(ξ)dµ(ξ) = 0.

These constraints can be enforced through the prior distribution on zθ(·).
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Enforcing Orthogonality

Recall zθ(·)|θ ∼ GP(0, σ2rθ(x , x ′))

(Theorem 3 of [1]) If rθ(x , x ′) = r(x , x ′)− hθ(x)TH−1
θ hθ(x ′) with

hθ(x) =
∑

‖α‖L1≤k

∫
Rn

D(α,1)f (ξ, θ)D(0,α)r(x , ξ)dµ(ξ),

Hθ =
∑

‖α′‖L1≤k

∑
‖α‖L1≤k

∫
X

∫
X
D(α′,1)f (ξ, θ)D(α,1)f (ξ, θ)

× D(α′,α)r(x , ξ)dµ(ξ′)dµ(ξ),

then with probability 1,∑
‖α‖L1≤k

∫
X
D(α,1)f (ξ, θ)D(α,0)zθ(ξ)dµ(ξ) = 0.

Notice that rθ(x , x ′) = r(x , x ′)− hθ(x)TH−1
θ hθ(x ′) takes a naive prior

covariance function on the bias and updates it with gradient information
from the computer model.
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Enforcing Orthogonality Example

Suppose we have an input space of x1 = 1, x2 = 2 with
y(1) = 2.3, y(2) = 3.9 and our biased model is given by

f (x , t) = t/4 + 2x + sin(tx)

Under the Kennedy O’Hagan model a reasonable prior covarince
conditional on θ is

covKO((zθ(1), zθ(2))T |θ) =
1

25

[
1 0.75

0.75 1

]
The author assigns the reproducing Hilbert space norm as the loss function
for this approach which is minimized at θ ≈ −0.108. This Loss function
was not originally provided by Kennedy and O’Hagan, but attributed to
them later.
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Enforcing Orthogonality Example Continued

Using the this framework we work with LL2 loss

(t/4 + 2 + sin(t)− 2.3)2 + (t/4 + 4 + sin(2t)− 2.3)2

which is minimized by θ ≈ .022.

This implies

d

dt
[(t/4 + 2 + sin(t)− 2.3)2 + (t/4 + 4 + sin(2t)− 2.3)2]|t=θ=.022 = 0.

further,
1.249zθ=.022(1) + 2.248zθ=.022(2) = 0.

which is enforced through theorem 3 by making the prior covariance of the
bias given θ,

covP((zθ(1), zθ(2))T |θ)

[
1.528 −0.849
−0.849 0.472

]
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Enforcing Orthogonality Example Continued

The dot represents (f (1, θ), f (2, θ)), the ovals represent 95% credible
regions for (Y1,Y2)|θ, and the ∗ represents one draw from
(y(1) + ε1, y(2) + ε2).
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Computing Difficult Integrals

Even for simpler loss functions like LL2(µ), integrals that define rθ(x , x ′) are
difficult to compute. However, one can draw a discrete set (ξ1, . . . , ξN)
independently from µ then use the following approximation,

LL2(µ)(y(·)− f (·, t)) ≈ 1

N

N∑
i=1

(y(ξi )− f (ξi , t))2

Let θN be a sequence of minimizers to the approximate loss, then θN → θ
almost surely as N →∞. Using a plug-in estimator for θ his motivates
setting

hθ(x) =
1

N

N∑
i=1

D(0,1)f (ξi , θ)r(x , ξi ),

Hθ =
1

N2

N∑
i=1

N∑
j=1

D(0,1)f (ξi , θ)D(0,1)f (ξ, θ)T r(ξi , ξj).
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Model Emulation

Now suppose the computer model is computationally expensive so we
wont have model evaluations or derivative information readily available.
Assumptions (ii) and (iii) must be updated.

(i) A natural process y(·) is a deterministic map from X → R .

(ii) A computer model f (·, ·) follows a Gaussian process with mean
mf (·, ·) and covariance function cf (·, ·). Then,

Ef [

∫
X

(y(ξ)− f (ξ, t))2dµ(ξ)] =

∫
X

(y(ξ)−mf (ξ, t))2 + vf (ξ, t)dµ(ξ)

(iii) There exists some θ for which∫
X

(y(ξ)−mf (ξ, θ))2+vf (ξ, θ)dµ(ξ) <

∫
X

(y(ξ)−mf (ξ, t))2+vf (ξ, t)dµ(ξ)

for all t 6= θ.
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Ion Channel Example

The data set contains the current (response) needed for a sodium ion
channel of a cardiac cell membrane to maintain a fixed amount (-35 mV)
of membrane potential over time.
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Summary

(i) The author formulates a method to specify the covariance structure of
the model bias given θ using a loss function and optimality conditions.

(ii) In some cases, this method seems to outperform the Kennedy,
O’Hagan approach, but at a much greater computational cost.
Particularly when the integrals hθ(·),Hθ are not know in closed form.
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