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A well-known result by Stein (1956) shows that in particular situations, bi-
ased estimators can yield better parameter estimates than their generally
preferred unbiased counterparts. This letter follows the same spirit, as we
will stabilize the unbiased generalization error estimates by regulariza-
tion and �nally obtain more robust model selection criteria for learning.
We trade a small bias against a larger variance reduction, which has the
bene�cial effect of being more precise on a single training set. We focus on
the subspace information criterion (SIC), which is an unbiased estimator
of the expected generalization error measured by the reproducing kernel
Hilbert space norm. SIC can be applied to the kernel regression, and it
was shown in earlier experiments that a small regularization of SIC has
a stabilization effect. However, it remained open how to appropriately
determine the degree of regularization in SIC. In this article, we derive
an unbiased estimator of the expected squared error, between SIC and
the expected generalization error and propose determining the degree of
regularization of SIC such that the estimator of the expected squared er-
ror is minimized. Computer simulations with arti�cial and real data sets
illustrate that the proposed method works effectively for improving the
precision of SIC, especially in the high-noise-level cases. We furthermore
compare the proposed method to the original SIC, the cross-validation,
and an empirical Bayesian method in ridge parameter selection, withgood
results.
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1 Introduction

Estimating the generalization capability of learning machines has been ex-
tensively studied so far because a good estimator of the generalization error
can be used for model selection (Vapnik, 1982, 1995, 1998; Bishop, 1995; De-
vroye, Gyö�, & Lugosi, 1996; Müller, Mika, Rätsch, Tsuda, & Schölkopf,
2001). Existing work for estimating the generalization error can be roughly
classi�ed into two approaches. One is to estimate the expected generaliza-
tion error (e.g., Mallows, 1964, 1973; Akaike, 1974; Takeuchi, 1976; Sugiura,
1978; Craven & Wahba, 1979; Wahba, 1990; Murata, Yoshizawa, & Amari,
1994; Konishi & Kitagawa, 1996; Murata, 1998; Sugiyama & Ogawa, 2001;
Sugiyama & Müller, 2002), and the other is to estimate the worst-case gen-
eralization error (e.g., Vapnik, 1995; Cherkassky, Shao, Mulier, & Vapnik,
1999; Cucker & Smale, 2002; Bousquet & Elisseeff, 2002). Both approaches
have strong theoretical properties, for example, the accuracy of the estima-
tors of the expected generalization error is theoretically guaranteed in the
sense of asymptotic or exact unbiasedness,1 or the validity of the estimators
of the worst-case generalization error (i.e., upper bounds on the generaliza-
tion error) is theoretically guaranteed with certain probability. So far, these
methods have been successfully applied to various practical learning tasks.

However, unbiased estimators of the expected generalization error can
have large variance, or the probabilistic upper bounds on the generalization
error can be loose. For this reason, it is very important to reduce the variance
of the unbiased estimators of the expected generalization error or tighten
the probabilistic upper bounds on the generalization error. In this article,
we focus on reducing the variance and propose a method for improving
the precision of unbiased estimators of the expected generalization error
by regularization. Since we are trying to shrink unbiased estimators of the
expected generalization error, this work can be regarded as an application
of the idea of the Stein estimator (Stein, 1956) to model selection.

So far, the variance of the unbiased estimators of the expected general-
ization error has been investigated (e.g., Felsenstein, 1985; Linhart, 1988;
Shimodaira, 1997, 1998), in a context where the small differences in the val-
ues of Akaike’s information criterion(AIC; Akaike, 1974) are not statistically
signi�cant.2 These articles proposed using a set of “good” models whose
values of AIC are relatively small rather than selecting the single best model
that minimizes AIC. Although these studies pointed out to us the need to
investigate the variance of the unbiased estimators of the expected gener-

1 Here, the term exact unbiasedness is used for expressing ordinary unbiasedness (i.e.,
the expectation agrees with the true value for �nite samples) in order to emphasize the
contrast with asymptotic unbiasedness (the expectation converges to the true value as the
number of samples goes to in�nity).

2 AIC is an asymptotic unbiased estimator of the expected generalization error mea-
sured by the Kullback-Leibler divergence.
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alization error, they are not primarily intended to improve the precision of
the estimators.

Tsuda, Sugiyama, and Müller (2002) gave a method for reducing the vari-
ance of the subspace information criterion (SIC; Sugiyama & Ogawa, 2001;
Sugiyama & Müller, 2002) by introducing a regularization parameter to
SIC.3 It was experimentally shown that a small regularization of SIC highly
contributes to stabilization. This work alluded to the possibility of obtaining
more precise estimators of the expected generalization error. At the same
time, it raised the question, so far unresolved, of how to appropriately de-
termine the degree of regularization in regularized SIC (RSIC).

In this letter, we therefore propose a method for appropriately determin-
ing the degree of regularization inRSIC, such that the expected squared error
between RSIC and the expected generalization error isminimized.However,
we cannot do so directly, since the expected squared error includes the un-
known expected generalization error. To cope with this problem, we derive
an unbiased estimator of the expected squared error that can be calculated
from the data and propose determining the degree of regularization in RSIC
such that this estimator of the expected squared error is minimized.

Finally, we apply the proposedmethod to the ridge parameter selection in
ridge regression. There are several interesting works that theoretically inves-
tigate the asymptotic optimalityof the choiceof the ridge parameter (Craven
& Wahba, 1979; Wahba, 1985; Li, 1986). Although we believe that showing
the asymptotic optimality of the proposed method may be possible, we are
especially interested in the performance with �nite samples. For this reason,
we shall experimentally investigate the model selection performance of the
proposed method in �nite sample situations. Simulations with arti�cial and
benchmark data sets show that our regularization approach contributes to
improving the precision of SIC; it especially has a stabilizing effect for high
noise, and consequently the model selection performance is improved.

The rest of this letter is organized as follows. The regression problem
is formulated in section 2, and the derivation of SIC is brie�y reviewed in
section 3. Section 4 introduces RSIC and gives a method for determining
the degree of regularization in RSIC. Computer simulations with arti�cial
and real data sets are performed in section 5, illustrating how RSIC works.
Finally, section 6 gives the conclusions and future prospects.

2 Problem Formulation

In this section, we formulate the regression problem of approximating a
target function from training samples.

3 SIC is an unbiased estimator of the expected generalization error measured by the
reproducing kernel Hilbert space norm. As described by Sugiyama and Ogawa (2001),
SIC can be regarded as an extension of Mallows’s CL (Mallows, 1973).
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Let us denote the learning target function by f .x/, which is a real-valued
function of d variables de�ned on a subset D of the d-dimensional Euclidean
space Rd. We are given a set of n samples called the training examples. A
training example consists of a sample point xi in D and a sample value yi in
R. We consider the case that yi is degraded by unknown additive noise ²i,
which is independently drawn from a normal distribution with mean zero
and variance ¾ 2.4 Then the training examples are expressed as

f.xi; yi/ j yi D f .xi/ C ²ign
iD1: (2.1)

We assume that the unknown learning target function f .x/ belongs to
a speci�ed reproducing kernel Hilbert space (RKHS) H.5 The reproducing
kernel of a functional Hilbert space H, denoted by K.x; x0/, is a bivariate
function de�ned on D £ D that satis�es the following conditions (see e.g.,
Aronszajn, 1950; Bergman, 1970; Saitoh, 1988, 1997; Wahba, 1990; Vapnik,
1998; Cristianini & Shawe-Taylor, 2000):

² For any �xed x0 in D, K.x; x0/ is a function of x in H.

² For any function f in H and for any x0 in D, it holds that

h f .¢/; K.¢; x0/iH D f .x0/; (2.2)

where h¢; ¢iH stands for the inner product in H.

We will employ the following kernel regression model Of .x/,

Of .x/ D
nX

iD1
®iK.x; xi/; (2.3)

where f®ign
iD1 are parameters to be estimated from training examples. Let us

denote the estimated parameters by f O®ign
iD1. We consider the case that the

estimated parameters f O®ign
iD1 are given by linear combinations of sample

values fyign
iD1. More speci�cally, letting

y D .y1; y2; : : : ; yn/>; (2.4)

O® D . O®1; O®2; : : : ; O®n/>; (2.5)

4 The normality of the noise is not assumed in our previous works (Sugiyama& Ogawa,
2001; Sugiyama & Müller, 2002). We do assume the normality here because we are dealing
with higher-order statistics. The discussion in this article may be generalized to any noise
distributions where up to the fourth-order moments of the noise are known or can be
estimated. However, for simplicity, we focus on the normal noise.

5 In our early work (Sugiyama & Ogawa, 2001), only �nite-dimensional RKHSs could
be dealt with. However, this restriction has been completely removed by Sugiyama and
Müller (2002).This article is based on the latter work, so we do not impose any restrictions
on the choice of the RKHS—for example, in�nite-dimensional RKHSs are also allowed.
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where > denotes the transpose of a vector (or a matrix), we consider the case
that the estimated parameter vector O® is given by

O® D Xy; (2.6)

where X is an n-dimensional matrix that does not depend on the noise
f²ign

iD1. The matrix X, which we call the learning matrix, can be any matrix,
but it is usually determined on the basis of a prespeci�ed learning criterion.
For example, in the case of ridge regression (Hoerl & Kennard, 1970), the
learning matrix X is determined by minimizing the regularized training
error

min

0

@
nX

iD1

±
Of .xi/ ¡ yi

²2
C ¸

nX

jD1

®2
j

1

A ; (2.7)

where ¸ is a positive scalar called the ridge parameter. A minimizer of
equation 2.7 is given by the following learning matrix,

X D .K2 C ¸I/¡1K; (2.8)

where I denotes the identity matrix and K is the so-called kernel matrix,
that is, the .i; j/th element of K is given by

Ki;j D K.xi; xj/: (2.9)

Note that Bayesian learning with a particular gaussian process prior yields
the same learning matrix (see, e.g., Williams & Rasmussen, 1996; Williams,
1998; Cristianini & Shawe-Taylor, 2000). In the following sections, we focus
on the above ridge regression for simplicity. However, all the discussions
are valid for any learning matrix X.

The purpose of regression is to obtain the optimal approximation Of .x/

to the unknown learning target function f .x/. For this purpose, we need a
criterionthat measures the closeness of two functions (i.e., the generalization
measure). In this article, we measure the generalization error by the squared
norm in the RKHS H,

k Of ¡ fk2
H ; (2.10)

where k ¢ kH denotes the norm in the RKHS H. Using the function space
norm as the error measure is rather common in the �eld of function approx-
imation (e.g., Daubechies, 1992; Donoho & Johnstone, 1994; Donoho, 1995).
The use of the RKHS norm is advantageous in the machine learning con-
text since we can measure various types of errors such as the interpolation
error, the extrapolation error, the test error at points of interest, the error at
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training sample points (Mallows, 1973), the error measured by a weighted
norm in the frequency domain (Smola, Schölkopf, & Müller, 1998; Girosi,
1998), or the error measured by the Sobolev norm (Wahba, 1990). When
unlabeled samples (fxjg without fyjg) are available in addition to the usual
training examples f.xi; yi/gn

iD1, another advantage of RKHS is that we can
use those unlabeled samples bene�cially and in straightforward manner
(Sugiyama & Ogawa, 2002; Tsuda et al., 2002). (For further discussions on
this generalization measure, see Sugiyama & Müller, 2002).

As stated in section 1, we focus on estimating the expected generalization
error,

J0[X] D E²k Of ¡ fk2
H ; (2.11)

where E² denotes the expectation over the noise f²ign
iD1. Note that we do

not take the expectation over the training sample points fxign
iD1, which is

often done in statistical learning frameworks (e.g., Akaike, 1974; Takeuchi,
1976; Murata et al., 1994; Konishi & Kitagawa, 1996; Murata, 1998). Thus,
our framework is more data dependent. We denote the expected generaliza-
tion error J0 as a functional of the learning matrix X since under the above
setting, specifying Of is equivalent to specifying the learning matrix X. In the
following, we often omit X if it is not relevant.

As can be seen from equation 2.11, J0 includes the unknown learning
target function f .x/, so it cannot be directly calculated. The aim of this
article is to give an estimator of equation 2.11 that can be calculated from
the given data.

3 Brief Review of the Subspace Information Criterion

The subspace information criterion (SIC) (Sugiyama & Ogawa, 2001; Sugi-
yama & Müller, 2002) is an unbiased estimator of an essential part of the
expected generalization error J0. In this section, we brie�y review the deriva-
tion of SIC.

Let S be the subspace spanned by fK.x; xi/gn
iD1, and let fS .x/ be the or-

thogonal projection of f .x/ onto S . Then the expected generalization error
J0 is expressed by

J0 D E²k Of ¡ fSk2
H C k fS ¡ fk2

H ; (3.1)

where the second term k fS ¡ fk2
H does not depend on Of . For this reason,

we will ignore it and denote the �rst term by J1:

J1[X] D E²k Of ¡ fSk2
H : (3.2)
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Since the projection fS.x/ belongs to S , it can be expressed by

fS .x/ D
nX

iD1

®¤
i K.x; xi/; (3.3)

where the parameters ®¤ D .®¤
1; ®¤

2; : : : ; ®¤
n/> are unknown.6 For conve-

nience, let us de�ne the weighted norm in Rn,

k®k2
K D hK®; ®i; (3.4)

where the inner product h¢; ¢i on the right-hand side is the ordinary Eu-
clidean inner product in Rn. Then J1 is expressed as

J1 D E²k O® ¡ ®¤k2
K: (3.5)

It is known that the above J1 can be decomposed into the bias and variance
terms (see e.g., Geman, Bienenstock, & Doursat, 1992; Heskes,1998):

J1 D kE² O® ¡ ®¤k2
K C E²k O® ¡ E² O®k2

K: (3.6)

The variance term E²k O® ¡ E² O®k2
K can be expressed as

E²k O® ¡ E² O®k2
K D ¾ 2tr

¡
KXX>¢

; (3.7)

where tr .¢/ denotes the trace of a matrix, that is, the sum of diagonal ele-
ments. Equation 3.7 implies that the variance term E²k O® ¡ E² O®k2

K in equa-
tion 3.6 can be calculated if the noise variance ¾ 2 is available. When ¾ 2 is
unknown, one of the practical estimates is given as follows (see, e.g., Wahba,
1990; Gu, Heckman, & Wahba, 1992):

O¾ 2 D

Pn
iD1

±
Of .xi/ ¡ yi

²2

n ¡ tr .KX/
D kKXy ¡ yk2

n ¡ tr .KX/
: (3.8)

Note that k¢k in the numerator on the right-hand side of equation 3.8 denotes
the ordinary Euclidean norm in Rn.

The bias term kE² O® ¡ ®¤k2
K in equation 3.6 is totally inaccessible since

both E² O® and ®¤ are unknown. The key idea of SIC is to assume that a
linear unbiased estimate O®u of the unknown true parameter vector ®¤ is
available:

E² O®u D ®¤; (3.9)

6 When fK.x; xi/gn
iD1 are linearly dependent, ®¤ is not determined uniquely. In this

case, we adopt the minimum norm one.
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where O®u is given by

O®u D Xuy: (3.10)

Sugiyama and Müller (2002) proved that such Xu is given by

Xu D K†; (3.11)

where † denotes the Moore-Penrose generalized inverse. Using the unbiased
estimate O®u, the bias term kE² O® ¡ ®¤k2

K in equation 3.6 is expressed by

kE² O® ¡ ®¤k2
K D k O® ¡ O®uk2

K

C 2hKE². O® ¡ O®u/; E². O® ¡ O®u/ ¡ . O® ¡ O®u/i

¡ kE². O® ¡ O®u/ ¡ . O® ¡ O®u/k2
K: (3.12)

However, the second and third terms on the right-hand side of equation
3.12 are still inaccessible since E². O® ¡ O®u/ is unknown, so we replace them
by their expectations over the noise.

Then we have the SIC (Sugiyama & Ogawa, 2001; Sugiyama & Müller,
2002):7

SIC1[X] D k.X ¡ Xu/yk2
K ¡ ¾ 2tr

¡
K.X ¡ Xu/.X ¡ Xu/>¢

C¾ 2tr
¡
KXX>¢

: (3.13)

Note that the subscript 1 is added to SIC in order to emphasize that it is an
estimator of J1 (cf. section 4.1). It was shown that for any learning matrix X,
SIC1 is an unbiased estimator of J1:

E²SIC1[X] D J1[X]: (3.14)

4 Regularization Approach to Stabilizing SIC

SIC is an unbiased estimator of the essential generalization error J1, and this
good property still holds even in �nite sample cases (i.e., nonasymptotic
cases). Sugiyama and Müller (2002) demonstrated that SIC can be success-
fully applied to the ridge parameter selection when the noise level is low or
medium. However, when the noise level is very high, the performance of
SIC sometimes becomes unstable because the variance of SIC can be large.
In this section, we propose a method for stabilizing SIC.

7 The phrase subspace information criterion (SIC) came from the fact that it was �rst
introduced for selecting subspace models (Sugiyama & Ogawa, 2001). However, now SIC
is used not only for choosing the subspace (i.e., the range of X), but also for choosing
the learning matrix X itself (Sugiyama & Müller, 2002). Therefore, in equation 3.13, we
describe SIC as a functional of the learning matrix X. For example, in the case of ridge
regression (see equation 2.7), SIC is regarded as a function of the ridge parameter ¸ and
can be used for choosing the best ridge parameter.
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4.1 Extracting Essential Part of SIC. SIC1 de�ned by equation 3.13 in-
cludes terms that do not depend on X. Indeed, SIC1 can be expressed as

SIC1[X] D hKXy; Xyi ¡ 2hKXy; Xuyi C hKXuy; Xuyi

C2¾ 2tr
¡
X>

u KX
¢

¡ ¾ 2tr
¡
X>

u KXu
¢

: (4.1)

Since SIC1 is used for choosing the learning matrix X, the third and �fth
terms in equation 4.1 can be ignored for this purpose. From here on, we use
the term SIC for referring to equation 4.1 without the third and �fth terms;
that is, we de�ne

SIC[X] D hKXy; Xyi ¡ 2hKXy; Xuyi C 2¾ 2tr
¡
X>

u KX
¢

: (4.2)

Similarly, J1 de�ned by equation 3.2 can be expressed as

J1[X] D E²k Of k2
H ¡ 2E²h Of ; fS iH C k fSk2

H

D E²hKXy; Xyi ¡ 2E²hKXy; Xuzi C hKXuz; Xuzi; (4.3)

where z is the noiseless sample value vector de�ned by

z D . f .x1/; f .x2/; : : : ; f .xn//>: (4.4)

Let us denote the �rst two terms in equation 4.3 by J:

J[X] D E²k Ofk2
H ¡ 2E²h Of ; fS iH

D E²hKXy; Xyi ¡ 2E²hKXy; Xuzi: (4.5)

Then it can be con�rmed that for any learning matrix X, SIC given by equa-
tion 4.2 is an unbiased estimator of J:

E²SIC[X] D J[X]: (4.6)

4.2 The Regularized SIC. Accordingto Tsuda et al. (2002), the instability
of SIC is mainly caused by the large variance of the unbiased estimate O®u,
which plays an essential role in the derivation of SIC (see section 3). In
order to reduce the variance of SIC, Tsuda et al. (2002) proposed replacing
the linear unbiased estimate O®u by a linear regularized estimate O®r:

O®r D Xry: (4.7)

Namely, the bias term kE² O® ¡®¤k2
K in equation 3.6 is roughly estimated by

k O®¡ O®uk2
K in the original SIC, while Tsuda et al. (2002) proposed estimating

it by k O®¡ O®rk2
K (see Figure 1). The regularized estimate O®r is slightly biased,
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E²®̂

®̂

®¤

®̂r

E²®̂r

Rn

Figure 1: Basic idea of the regularized SIC (RSIC). The bias term kE² O® ¡ ®¤k2
K

(depicted by the solid line) is roughly estimated by k O® ¡ O®rk2
K (depicted by the

dotted line), where O®r is a regularized estimate. The regularized estimate O®r is
slightly biased, so its expectation E² O®r no longer agrees with the true parameter
®¤. On the other hand, the scatter of O®r (denoted by the lighter circle) may be
far smaller than that of the unbiased estimate O®¹ (denoted by the darker circle).

so its expectation E² O®r no longer agrees with the true parameter ®¤. On the
other hand, the scatter of O®r may be far smaller than that of the unbiased
estimate O®u. The learning matrix Xr that provides the linear regularized
estimate O®r is given, for example, by

Xr D .K2 C ° I/¡1K; (4.8)

where ° is the regularization parameter that controls the degree of regular-
ization in SIC. Note that the following discussions are valid for any learning
matrix Xr, but we mainly focus on equation 4.8 for simplicity. We refer to
SIC de�ned by equation 4.2 with Xu replaced by Xr as the regularized SIC
(RSIC):

RSIC[XI Xr] D hKXy; Xyi ¡ 2hKXy; Xryi C 2¾ 2tr
¡
X>

r KX
¢

; (4.9)

where the notation RSIC[XI Xr] means that RSIC is a functional of a learning
matrix X with a parameter matrix Xr. It was experimentally shown that
this regularization approach works effectively for stabilizing SIC (Tsuda et
al., 2002). However, the degree of regularization (e.g., the regularization
parameter ° in equation 4.8) should be appropriately determined, which is
still an open problem. In the following, we propose a method to determine
the degree of regularization of RSIC.
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4.3 Expected Squared Error of RSIC. Let us de�ne the expected squared
error (ESE) between RSIC and J by

ESERSIC[XrI X] D E².RSIC[XI Xr] ¡ J[X]/2; (4.10)

where the notation ESERSIC[XrI X] means that we treat ESERSIC as a func-
tional of the matrix Xr with a parameter matrix X. In the following, we often
omit [XrI X]. Our aim is to determine Xr in RSIC so that the above ESERSIC
is minimized.

Similar to equation 3.6, ESERSIC can be decomposed into the bias and
variance terms:

ESERSIC[XrI X] D Bias2
RSIC[XrI X] C VarRSIC[XrI X]; (4.11)

where

BiasRSIC[XrI X] D E²RSIC[XI Xr] ¡ J[X]; (4.12)

VarRSIC[XrI X] D E².RSIC[XI Xr] ¡ E²RSIC[XI Xr]/2: (4.13)

Note that the bias of SIC is zero (see equation 4.6), but there is no guarantee
that ESE of SIC is small since the variance of SIC can be large.

Let B and C be n-dimensional matrices de�ned by

B D 2X>
u KX ¡ 2X>

r KX; (4.14)

C D X>KX ¡ 2X>
r KX: (4.15)

Then we have the following lemmas:

Lemma 1. BiasRSIC is expressed by

BiasRSIC D hBz; zi; (4.16)

where z is de�ned by equation 4.4.

Lemma 2. Under the assumption that f²ign
iD1 are independently drawn from the

normal distribution with mean zero and variance ¾ 2, VarRSIC is expressed by

VarRSIC D ¾ 2k.C C C>/zk2 C ¾ 4tr
±

C2 C C>C
²

: (4.17)

Sketches of the proofs of all lemmas and theorems are given in the ap-
pendix. See the separate technical report (Sugiyama, Kawanabe, & Müller,
2003) for the complete proofs. Note that the normality of the noise is used
only in lemma 2, not in lemma 1.
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4.4 Estimating the Expected Squared Error of RSIC. In equations 4.16
and 4.17, the noiseless sample value vector z de�ned by equation 4.4 is
unknown. Therefore, BiasRSIC and VarRSIC cannot be directly calculated in
practice. Now let us de�ne

[Bias2
RSIC[XrI X] D hBy; yi2 ¡ ¾ 2k.B C B>/yk2 ¡ 2¾ 2tr .B/ hBy; yi

C¾ 4tr
±

B2 C B>B
²

C ¾ 4tr .B/2 ; (4.18)

dVarRSIC[XrI X] D ¾ 2k.C C C>/yk2 ¡ ¾ 4tr
±
C2 C C>C

²
: (4.19)

Then the following theorem holds:

Theorem 1. Under the assumption that f²ign
iD1 are independently drawn from

the normal distribution with mean zero and variance ¾ 2, the following relations
hold for any Xr and X:

E²
dBias

2
RSIC[XrI X] D Bias2

RSIC[XrI X]; (4.20)

E²
dVarRSIC[XrI X] D VarRSIC[XrI X]: (4.21)

The above theorem shows that [Bias2
RSIC and dVarRSIC are unbiased esti-

mators of Bias2
RSIC and VarRSIC, respectively.

Let us de�ne

dESERSIC[XrI X] D [Bias2
RSIC[XrI X] C dVarRSIC[XrI X]: (4.22)

Then, from theorem 1, we immediately have the following corollary:

Corollary 1. Under the assumption that f²ign
iD1 are independently drawn from

the normal distribution with mean zero and variance ¾ 2, the following relation
holds for any Xr and X:

E²
dESERSIC[XrI X] D ESERSIC[XrI X]: (4.23)

Corollary 1 shows that the dESERSIC de�ned by equation 4.22 is an un-
biased estimator of ESERSIC. Based on this corollary, we propose using
dESERSIC[XrI X] for determining the degree of regularization of RSIC, that is,
Xr is determined such that dESERSIC[XrI X] is minimized. Note that dESERSIC
[XrI X] depends on the learning matrix X, so Xr is individually optimized
for each X.

For example, when X and Xr are both ridge regression,8 RSIC is treated
as a function of ¸ with a tuning parameter ° and dESERSIC is treated as a

8 X is given by equation 2.8, and Xr is given by equation 4.8.
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function of ° that depends on ¸. The regularization parameter ° in RSIC is
determined for each ridge parameter ¸ such that dESERSIC is minimized, and
then ¸ is determined such that RSIC is minimized:

O̧ RSIC D argmin
¸

RSIC.¸I O°¸/; (4.24)

where

O°¸ D argmin
°

dESERSIC.° I ¸/: (4.25)

When the noise variance ¾ 2 is unknown, it can be estimated, for example,
by equation 3.8.

5 Computer Simulations

In this section, the effectiveness of the proposed generalization error esti-
mation method is investigated through computer simulations.

5.1 Illustrative Examples. First, a simple arti�cial simulation shows
how the proposed method works.9

5.1.1 Setting. For illustration purpose, let the dimension d of the input
vector be 1. We use the gaussian RKHS with width c D 1, which may
be one of the standard RKHSs (see, e.g., Vapnik, 1998; Schölkopf, Smola,
Williamson, & Bartlett, 2000):

K.x; x0/ D exp
³

¡ .x ¡ x0/2

2c2

´
: (5.1)

We use f .x/ D sinc.x/ as the learning target function (see Figure 2), which is
often used as an illustrative regression example (e.g., Vapnik, 1998; Schölkopf
et al., 2000). Note that the above sinc function is included in the gaussian
RKHS.10

9 Because of space limitations, we describe the results only brie�y here. For extensive
discussions, see Sugiyama et al., (2003)

10 As described in Smola et al. (1998) and Girosi (1998), the gaussian RKHS is spanned
by the function f .x/ that belongs to L2.R/ and satis�es

Z 1

¡1

j Qf .!/j2

Qk.!/
d! < 1;

where Qf .!/ is the Fourier transform of the function f .x/ and Qk.!/ is the Fourier transform

of exp
±

¡ x2

2c2

²
. The sinc function belongs to L2.R/, and its Fourier transform is zero for

j!j > ¼ . Therefore, the above conditions are ful�lled so the sinc function is included in
the gaussian RKHS.
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Figure 2: Learning target function and 50 training examples with noise variance
¾ 2 D 0:09.

The sample points fxign
iD1 are independently drawn from the uniform dis-

tribution on .¡¼; ¼/. The sample values fyign
iD1 are created as yi D f .xi/C ²i,

where the noise f²ign
iD1 are independently drawn from the normal distribu-

tion with mean zero and variance ¾ 2. We consider the following four cases
as the number n of training examples and the noise variance ¾ 2:

.n; ¾ 2/ D .100; 0:01/; .100; 0:09/;

.50; 0:01/; .50; 0:09/; (5.2)

that is, we investigate the cases with small or large noise levels and small or
large samples. An example of the training set is also illustrated in Figure 2.
The simulations are repeated 100 times for each .n; ¾ 2/ in equation 5.2,
randomly drawing the sample points fxign

iD1 and noise f²ign
iD1 from scratch

in each trial. Note that in theory, we �x the training sample points fxign
iD1 and

change only the noise f²ign
iD1 (see section 2). However, in this experiment, we

change both the training sample points fxign
iD1 and noise f²ign

iD1 because we
would like to investigate whether the proposed method works regardless
of the choice of the training set.

We use the kernel regression model, equation 2.3, and the parameters
f®ign

iD1 in the model are learned by ridge regression, that is, the learning
matrix is given by equation 2.8.

5.1.2 Investigating Generalization Error Estimation Performance. First, we
illustrate how SIC and RSIC work in generalization error estimation. The
precisionof SIC and RSIC is investigated as a function of the ridge parameter
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¸, using the following values:

¸ 2 f10¡3; 10¡2:5; 10¡2; : : : ; 103g: (5.3)

When the ridge regression, equation 2.8, is used, it holds that K> D
K, X> D X, and K†KX D X. Therefore, SIC given by equation 4.2 can be
expressed in the following simpler form,

SIC.¸/ D hX¸KX¸y; yi ¡ 2hX¸y; yi C 2¾ 2tr .X¸/ ; (5.4)

where X¸ denotes the learning matrix, equation 2.8 with a ridge parameter
¸.

We calculate SIC by the above simpler form, where the noise variance ¾ 2

is estimated by

O¾ 2
¸ D

kKX¸y ¡ yk2

n ¡ tr .KX¸/
: (5.5)

RSIC is calculated by equation 4.9, where the ridge regression, equation
4.8, is used for obtaining the regularized estimator O®r. The regularization
parameter ° in RSIC is determined so that dESERSIC.° I ¸/ is minimized (see
equation 4.22). Note that the optimization of ° is individually carried out
for each ¸ in equation 5.3. The regularization parameter ° is selected from
f10¡3; 10¡2:5; 10¡2; : : : ; 103g. The noise variance ¾ 2 in RSIC and dESERSIC is
estimated by equation 5.5.

In this experiment, we measure the generalization error by the following
criterion, which is equivalent to J without the expectation E² (see equa-
tion 4.5),

Error.¸/ D k Of¸k2
H ¡ 2h Of¸; fSiH

D hKX¸y; X¸yi ¡ 2hX¸y; zi; (5.6)

where Of¸ denotes the learned function with a ridge parameter ¸.
Figure 3 displays the values of Error.¸/, SIC.¸/, and RSIC.¸/ as a function

of the ridge parameter ¸ for each .n; ¾ 2/ in equation 5.2. The horizontal axis
denotes the values of ¸ in log scale. From the top, the graphs denote the
mean Error with error bar, the mean SIC with error bar, and the mean RSIC
with error bar. The mean is taken over 100 trials, and the error bar denotes
the standard deviation over 100 trials. In order to compare the mean curves
clearly, the mean Error is also drawn by the dashed line in the bottom two
graphs.

Figure 4 depicts the values of ESE (see equation 4.10), Bias2 (see equa-
tion 4.12), and Var (see equation 4.13) of SIC and RSIC as a function of the
ridge parameter ¸. Note that in this simulation, the expectation over the
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A. (n; ¼ 2) = (100; 0:01) B. (n; ¼ 2) = (100; 0:09)
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Figure 3: Values of Error.¸/, SIC.¸/, and RSIC.¸/. The horizontal axis denotes
the value of ¸ in log scale. From top, the graphs denote the mean Error with error
bar, the mean SIC with error bar, and the mean RSIC with error bar. Dashed
curves in the bottom two graphs are the mean Error (same as the curve in the
top graph).

A. (n; ¼ 2) = (100; 0:01) B. (n; ¼ 2) = (100; 0:09)

­ 3 ­ 2 ­ 1 0 1 2 3
0

0.5

E
S

E

SIC
RSIC

­ 3 ­ 2 ­ 1 0 1 2 3
0

0.5

S
qu

ar
ed

 B
ia

s

SIC
RSIC

­ 3 ­ 2 ­ 1 0 1 2 3
0

0.5

V
ar

logl

SIC
RSIC

­ 3 ­ 2 ­ 1 0 1 2 3
0

5

10

E
S

E

SIC
RSIC

­ 3 ­ 2 ­ 1 0 1 2 3
0

5

10

S
qu

ar
ed

 B
ia

s

SIC
RSIC

­ 3 ­ 2 ­ 1 0 1 2 3
0

5

10

V
ar

logl

SIC
RSIC

Figure 4: Values of ESE (see equation 4.10), Bias2 (see equation 4.12), and Var
(see equation 4.13) for SIC and RSIC. The horizontal axis denotes the value of ¸

in log scale.
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noise included in the de�nitions of ESE, Bias, and Var is replaced by the
mean over 100 trials, where both the training sample points fxign

iD1 and noise
f²ign

iD1 are changed.
When .n; ¾ 2/ D .100; 0:01/, the left graphs in Figure 3 show that the mean

SIC seems to capture the mean Error very well and the size of the error bar
looks reasonable. The mean RSIC looks almost the same as the mean SIC for
medium to large ¸, but the mean RSIC is slightly overestimated for small ¸.
In exchange, the errorbar of RSIC is slightly smaller than that of SIC for small
¸. Indeed, the left graphs in Figure 4 show that for small ¸, Bias2

RSIC is slightly
larger than Bias2

SIC but VarRSIC is slightly smaller than VarSIC. Consequently,
ESERSIC and ESESIC are comparable. When .n; ¾ 2/ D .100; 0:09/, the right
graphs in Figure 3 show that the mean SIC still captures the mean Error very
well. However, the size of the error bar is rather large for small ¸. In contrast,
the size of the error bars of RSIC is compressed for small ¸, in exchange for
the slight overestimation of the mean RSIC for small ¸. Indeed, the right
graphs in Figure 4 show that while the variance is largely suppressed for
small ¸, the increase in the squared bias is relatively small. As a result, ESE is
much improvedfor small ¸, and it stays almost the same formedium to large
¸. When the number n of training examples is 50, all the results are almost
identical to the case with n D 100. For this reason, we omit the graphs.

The above simulation results show that RSIC with dESERSIC maintains the
good performance of SIC when the noise level is low, and it highly improves
the precision over SIC when the noise level is high. Furthermore, it is notable
that the simulation results are almost unchanged even when the number of
training examples is decreased. This may be a useful property in practice.

5.1.3 Investigating Model Selection Performance. Now we illustrate how
SIC and RSIC work in model selection. We choose the ridge parameter ¸

from equation 5.3 so that SIC or RSIC is minimized. The goodness of the
selected ridge parameter is again evaluated by the Error from equation 5.6.

Figure 5 depicts the values of Error obtained by the ridge parameter
selected based on SIC or RSIC. The box plot notation speci�es marks at 5,
25, 50, 75, and 95 percentiles from bottom. OPT indicates the optimal choice
of the ridge parameter; we actually calculated Error for each ¸ in equation 5.3
and selected the one that minimizes Error. Note that the values of Error can
be negative since a positive constant is ignored in the de�nition of Error,
equation 5.6 (cf. equation 2.10).

When .n; ¾ 2/ D .100; 0:01/, the error obtained by RSIC is comparable to
that of SIC (see the left plot in Figure 5); this fact is also con�rmed by the 95%
t-test (see e.g., Henkel, 1979). When .n; ¾ 2/ D .100; 0:09/, the distributions
of the error obtained by SIC and RSIC are comparable for 5, 25, and 50
percentiles, but RSIC improves 75 and 95 percentiles over SIC (see the right
plot in Figure 5). The t-test says that RSIC surely improves over SIC. When
the number n of training examples is 50, all the results are again similar to
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A. (n; ¼ 2) = (100; 0:01) B. (n; ¼ 2) = (100; 0:09)
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Figure 5: Box plot of Error obtainedby the ridge parameter selected basedon SIC
or RSIC. The box plot notation speci�es marks at 5, 25, 50, 75, and 95 percentiles
of values from bottom. OPT indicates the optimal choice of the ridge parameter.
Note that the values of Error can be negative since a positive constant is ignored.

the case with n D 100 (although the improvement of RSIC over SIC is not
statistically signi�cant when .n; ¾ 2/ D .50; 0:09/). For this reason, we omit
the plots.

The above model selection simulation results show that RSIC and SIC
perform similarly when the noise level is low, and RSIC works better than
SIC when the noise level is high. Especially, RSIC mostly improves higher
percentiles of the obtained error (see Figure 5), from which we conjecture
that RSIC is a robust model selection criterion against “wicked” training
sets.

5.2 Real Data Sets. In section 5.1, we found that RSIC works well for
a very simple arti�cial data set. Here we apply RSIC to real data sets, and
evaluate whether this good property can be carried over to practical prob-
lems. We will use 10 practical data sets provided by DELVE (Rasmussen
et al., 1996): Abalone, Boston, Bank-8fm, Bank-8nm, Bank-8fh, Bank-8nh,
Kin-8fm, Kin-8nm, Kin-8fh, and Kin-8nh.

The Abalone data set contains 4177 samples, each of which consists of
nine physical measurements. The task is to estimate the last attribute (the age
of abalones) from the rest. The �rst attribute is qualitative (male/female/
infant) so it is ignored; 7-dimensional input and 1-dimensional output data
are used. The Boston data set contains 506 samples with 13-dimensional
input and 1-dimensional output data. The Bank data family consists of four
data sets. They are labeled as fm, nm, fh, and nh, where f or n signi�es “fairly
linear” or “nonlinear,” respectively, and m or h signi�es “medium unpre-
dictability/noise” or “high unpredictability/noise,” respectively. Each of
the four data sets contains 8192 samples, consisting of 8-dimensional input
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and 1-dimensional output data. The Kin data family also consists of four
data sets labeled as fm, nm, fh, and nh. Each of the four data sets has 8192
samples, consisting of 8-dimensional input and 1-dimensional output data.

For convenience, every attribute is normalized to [0; 1]. One hundred
randomly selected samples f.xi; yi/g100

iD1 are used for training. In the real data
set, we cannot measure the generalization error by equation 5.6 since neither
the true function f nor its projection fS is known. Instead, we evaluate the
performance by the mean squared test error de�ned by

Test Error D 1
n0

n0X

iD1

±
Of .x0

i/ ¡ y0
i

²2
; (5.7)

where f.x0
i; y0

i/gn0

iD1 denote the test samples that are not used for training. A
gaussian kernel with width c D 1 is again employed (see equation 5.1), and
the kernel regression model, equation 2.3 with ridge regression, equation
2.8 is used for learning. The ridge parameter ¸ is selected from

¸ 2 f10¡3; 10¡2; 10¡1; : : : ; 103g: (5.8)

As ridge parameter selection strategies, we compare SIC, RSIC, leave-
one-out cross-validation (CV),11 and an empirical Bayesian method (EB)
(Akaike, 1980). SIC is calculated by equation 5.4, where the noise variance
¾ 2 is estimated by equation 5.5. For each ¸ in equation 5.8, the regular-
ization parameter ° in RSIC is chosen from f10¡3; 10¡2; 10¡1; : : : ; 103g so
that dESERSIC is minimized. The noise variance ¾ 2 in RSIC and dESERSIC is
estimated by equation 5.5.

The simulation is repeated 100 times, randomly selecting the training set
f.xi; yi/g100

iD1 from scratch in each trial (i.e., sampling without replacement).
Note that the test set f.x0

i; y0
i/gn0

iD1 also varies in each trial.
Simulation results are summarized in Table 1. The table describes the

normalized mean test errorsand their standard deviations, where the values
of the test error are normalized so that the mean test error obtained by the
optimal ridge parameter is 1. The results of the best method and all other
methods with no signi�cant difference (95% t-test) are described in italics.

The result shows that RSIC gives the best or comparable results for 8 of
10 data sets. It is interesting to note that RSIC outperforms SIC for data sets
with high noise (Bank-8fh, Bank-8nh, Kin-8fh, and Kin-8nh data sets), while

11 For the kernel regression model, equation 2.3, there are two possibilities of calculat-
ing the leave-one-out error. One is to use the full kernel regression model with n kernels all
through the leave-one-out procedure; when one sample is left, the corresponding kernel
function is kept. The other is to use the reduced kernel regression model with n¡1 kernels
in the leave-one-out procedure; when one sample is left, the corresponding kernel func-
tion is also left. We took the former standpoint and used the closed formula for calculating
the leave-one-out error (see, e.g., Wahba, 1990; Orr, 1996).
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Table 1: Normalized Mean Test Errors and Their Standard Deviations.

Data SIC RSIC Cross Validation Empirical Bayes

Abalone 1:005 § 0:050 1:015 § 0:045 1:015 § 0:043 1:044 § 0:083

Boston 1:000 § 0:218 1:000 § 0:218 1:113 § 0:199 1:138 § 0:178

Bank-8fm 1:001 § 0:066 1:034 § 0:100 1:040 § 0:095 1:029 § 0:092

Bank-8nm 1:002 § 0:063 1:013 § 0:071 1:023 § 0:077 1:054 § 0:090

Bank-8fh 1:081 § 0:088 1:037 § 0:097 1:063 § 0:082 1:066 § 0:104

Bank-8nh 1:062 § 0:079 1:008 § 0:056 1:004 § 0:050 1:344 § 0:113

Kin-8fm 1:000 § 0:077 1:000 § 0:077 1:005 § 0:093 1:526 § 0:253

Kin-8nm 1:009 § 0:060 1:006 § 0:056 1:078 § 0:063 1:135 § 0:025

Kin-8fh 1:046 § 0:080 1:022 § 0:061 1:029 § 0:067 1:086 § 0:045

Kin-8nh 1:160 § 0:094 1:077 § 0:091 1:020 § 0:031 1:031 § 0:047

Note: Italics denotes the results of the best method and all other methods with no
signi�cant difference.

RSIC gives fairly comparable results to SIC for data sets with medium noise
(Bank-8nm, Kin-8fm, and Kin-8nm data sets). Therefore, RSIC can improve
the degraded performance of SIC in the high-noise cases, and it tends to
maintain the good performance of SIC in the medium-noise cases. In theory,
we assumed that the noise f²ign

iD1 are independently drawn from the normal
distribution with mean zero and common variance. This assumption may
not be ful�lled in the DELVE data sets. This implies that when using RSIC
in practice, the assumption on the noise does not have to be rigorously
satis�ed. Compared with CV and EB, RSIC is comparable or better for most
of the data sets.

From the above experimental results, we conjecture that RSIC should
be regarded as a practical model selection criterion for choosing the ridge
parameter.

Finally, we compare our results with "-support vector regression ("-SVR)
(Vapnik, 1998; Schölkopf & Smola, 2002), which recently became one of the
most popular regression algorithms. In SVR, we used the same gaussian
kernel with width c D 1 (see equation 5.1). The regularization parameter C
and the tube width " in SVR are chosen from a wide range of values using
10-fold cross-validation. We obtained the solutions of SVR by the SVMlight

package (Joachims, 1999).
The simulation results are described in Table 2, where the results of the

signi�cantly better method (95% t-test) are described in boldface. The table
shows that SVR works well for the Boston, Bank-8nh, Kin-8fh, and Kin-8nh
data sets (although the 95% t-test does not say that they are signi�cantly
different from the results of the ridge regression with RSIC), and it tends
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Table 2: Normalized Mean Test Errors and Their Standard Deviations for the
Ridge Regression with RSIC and the Support Vector Regression with 10-Fold
Cross Validation.

Data Ridge+RSIC SVR+10CV

Abalone 1:015 § 0:045 1:096 § 0:118

Boston 1:000 § 0:218 0:955 § 0:198

Bank-8fm 1:034 § 0:100 1:157 § 0:148

Bank-8nm 1:013 § 0:071 1:217 § 0:168

Bank-8fh 1:037 § 0:097 1:095 § 0:127

Bank-8nh 1:008 § 0:056 0:988 § 0:104

Kin-8fm 1:000 § 0:077 1:059 § 0:143

Kin-8nm 1:006 § 0:056 1:056 § 0:103

Kin-8fh 1:022 § 0:061 1:020 § 0:091

Kin-8nh 1:077 § 0:091 1:078 § 0:101

Note: Boldface denotes the results of the sig-
ni�cantly better method (95% t-test).

to give larger errors for other data sets. Given the fact that the Boston,
Bank-8nh, and Kin-8fh data sets may include large noise, the "-insensitive
loss seems to be more robust for such large noise cases (cf. Müller et al.,
1998). However, SVR tends to give large errors for the given data sets that
include small noise (Bank-8fm, Bank-8nm, Kin-8fm, and Kin-8nm data sets).
Therefore, the "-insensitive loss is not as effective as the squared loss on the
medium/small noise cases considered in the table (see also Müller et al.,
1998; Schölkopf & Smola, 2002). Note that the main difference between the
ridge regression and SVR is the loss function: The ridge regression uses a
squared loss (see equation 2.7), while SVR uses the "-insensitive loss. Which
one will be advantageous certainly depends on what noise type is inherent
to the data-generating process.

Note that the computation time for the ridge regression with RSIC is
faster than that for SVR with cross-validation because the latter requires
retraining.12 For this reason, we consider using ridge regression with RSIC
to be advantageous in practice.

12 Note that retraining is not needed for the ridge regression with leave-one-out cross
validation because the leave-one-out error can be calculated analytically (see, e.g., Wahba,
1990; Orr, 1996).
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6 Conclusions and Outlook

In this article, we have proposedusing Stein’s idea in the context of model se-
lection; we suggested that the use of a biased estimator, such as, by means of
regularization, can yield more stable and robust, and thus better estimators
of the generalization error than its unbiased counterpart. Thus, we sacri�ced
the unbiasedness for the sake of variance reduction in a model selection cri-
terion by actively optimizing and balancing out this bias-variance trade-off.

This general idea was applied for a particular criterion where we regular-
ized the unbiased estimator of the expected generalization error called the
subspace information criterion (SIC). Our approach was to directly estimate
the expected squared error between the generalization error estimator and
the expected generalization error, and determine the degree of regulariza-
tion in the regularized SIC (RSIC) such that the estimator of the expected
squared error is minimized. Computer simulations with arti�cial and real
data sets showed that our approach surely contributes to obtaining a more
precise estimator of the expected generalization error, and it can be success-
fully applied to the ridge parameter selection.

We focused on the case that SIC is regularized by Xr given by equation
4.8. However, the proposed method for determining the degree of RSIC is
valid for any type of regularization; the estimator of the expected squared
error given by equation 4.22 does not depend on the form of Xr. Finding
improved ways of regularization, in particular using domain knowledge,
is left to future exploration. Furthermore, it would be interesting to extend
the current framework such that ef�cient nonlinear estimators such as the
LASSO (Tibshirani, 1996) can be dealt with.

In equation 4.22, we gave an unbiased estimator of the expected squared
error between RSIC and the expected generalization error. The simulation
results reported in section 5 showed that the unbiased estimator of the
expected squared error contributes bene�cially to stabilizing SIC. However,
the unbiased estimator of the expected squared error can again have large
variance because of its unbiasedness (see the experimental results reported
in Sugiyama et al., 2003, for details). One of the promisingfuture directions is
to improve the unbiased estimator of the expected squared error to enhance
the precision of RSIC further.

The theoretical discussions in section 4 do not include the analysis of
estimating the noise variance ¾ 2. From the simulation with arti�cial data
sets (see section 5.1), the in�uence of estimating the noise variance ¾ 2 ap-
pears unproblematic because the unbiasedness of SIC is almost satis�ed,
and therefore RSIC can improve the precision over SIC. It still remains open
to see whether this property can be shown to hold always or not. There-
fore, it is a further important step to investigate the in�uence of the noise
variance estimation more formally.

Our previous work (Sugiyama & Müller, 2002) showed that a linear un-
biased estimate of the projection fS exists if and only if the regression model
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is included in the span of fK.x; xi/gn
iD1. For this reason, we chose to use the

kernel regression model given by equation 2.3. However, due to this fact, the
SIC given in Sugiyama and Müller (2002) cannot be used for selecting the
kernel parameters (e.g., kernel width). In RSIC, the linear unbiased estimate
of the projection fS has not appeared explicitly anymore in the de�nition
(see equation 4.9). Therefore, in principle, RSIC could be applied to regres-
sion models that are not included in the span of fK.x; xi/gn

iD1, such as, models
with different kernel width. However, we are still using the linear unbiased
estimate of the projection fS for determining the degree of regularization in
RSIC (see section 4.3). It is therefore interesting to devise other methods for
determining the degree of regularization in RSIC that do not use the linear
unbiased estimate of the projection fS , to enable an optimization of even
the kernel parameters by RSIC.

In this article, we pursued a better estimator of the generalization er-
ror. Another important issue in model selection research is to investigate
model selection performance. For several model selection criteria such as
Mallows’s CL (Mallows, 1964, 1973) and the generalized cross-validation
(Craven & Wahba, 1979; Wahba, 1990), asymptotic optimalityof the choiceof
the model has been investigated throughly (Craven & Wahba, 1979; Wahba,
1985; Li, 1986). It will be instructive to see whether similar discussions can
be made for SIC and RSIC.

Finally, another future direction is to apply our general idea of stabi-
lizing model selection criteria to other existing criteria. For example, the
leave-one-out error is shown to be an almost unbiased estimate of the ex-
pected generalization error (Luntz & Brailovsky,1969, see also Schölkopf &
Smola, 2002), but it can have a large variance. For this reason, it is often
recommended to use 5- or 10-fold cross validation (i.e., divide the train-
ing set into 5 or 10 disjoint sets). However, the number of folds in cross
validation actually controls the trade-off between the bias and variance of
the cross-validation estimates of the expected generalization error. For this
reason, it is highly important to determine the number of folds in cross
validation so that the expected squared error between the cross-validation
estimate and the expected generalization error is minimized. We conjecture
that the approach taken in this article can also play an important role in this
challenging problem.

Appendix A: Sketch of Proof of Lemma 1

It follows from equation 4.9 that E²RSIC is expressed as

E²RSIC D hX>KXz; zi C ¾ 2tr
¡
X>KX

¢
¡ 2hX>

r KXz; zi: (A.1)

Similarly, it follows from equation 4.5 that J is expressed as

J D hX>KXz; zi C ¾ 2tr
¡
X>KX

¢
¡ 2hX>

u KXz; zi; (A.2)



1100 M. Sugiyama, M. Kawanabe, and K. Müller

where only the third term is different from equation A.1. Then BiasRSIC is
expressed as

BiasRSIC D h.2X>
u KX ¡ 2X>

r KX/z; zi: (A.3)

Equations A.3 and 4.14 yield equation 4.16.

Appendix B: Sketch of Proof of Lemma 2

Let ² be the noise vector de�ned by

² D .²1; ²2; : : : ; ²n/>: (B.1)

Then VarRSIC is expressed as

VarRSIC D ¾ 2k.C C C>/zk2 C E²hC²; ²i2 C ¾ 4tr .C/2

C2E²h.C C C>/z; ²ihC²; ²i ¡ 2¾ 4tr .C/2 : (B.2)

On the other hand, it holds that

E²hC²; ²i2 D E²

nX

i;j;k;lD1

Ci;jCk;l²i²j²k²l; (B.3)

E²h.C C C>/z; ²ihC²; ²i D E²
nX

i;j;k;lD1

.Ci;j C Cj;i/Ck;lzi²j²k²l; (B.4)

where Ci;j denotes the .i; j/th element of C. It is known that when the ran-
dom variable ²i is drawn from the normal distribution with mean zero and
variance ¾ 2, it holds that E²²3

i D 0 and E²²4
i D 3¾ 4 (e.g., Lehmann, 1983).

They imply that all terms in E²
Pn

i;j;k;lD1 Ci;jCk;l²i²j²k²l vanish except four
cases: i D j D k D l, i D j 6D k D l, i D k 6D j D l, and i D l 6D j D k. Therefore,
we have

E²hC²; ²i2 D ¾ 4tr .C/2 C ¾ 4tr
¡
C>C

¢
C ¾ 4tr

±
C2

²
: (B.5)

Similarly, all terms in
Pn

i;j;k;lD1.Ci;j C Cj;i/Ck;lzi²j²k²l vanish:

E²h.C C C>/z; ²ihC²; ²i D 0: (B.6)

Substituting equations B.5 and 5.6 into equation B.2, we obtain equation
4.17.
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Appendix C: Sketch of Proof of Theorem 1

It holds that

E²hBy; yi2 D Bias2
RSIC C ¾ 2E²k.B C B>/yk2 C 2¾ 2tr .B/ E²hBy; yi

¡¾ 4tr
±

B2 C B>B
²

¡ ¾ 4tr .B/2 ; (C.1)

from which we have equation 4.20. Similarly, it holds that

VarRSIC D E²
±

¾ 2k.C C C>/yk2 ¡ ¾ 4tr
±
C2 C C>C

²²
: (C.2)

from which we have equation 4.21.
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