
Bayesian Methods: Introduction to Multi-parameter Models 
 

Parameter: 1 2( , )θ θ θ=  
§ Given Likelihood p(y| )θ and prior p(θ ), the posterior 1 2( , | )p yθ θ  is 

proportional to p(y| )θ x p(θ ) 
 

Marginal posterior 
 
§ Interested only in 1θ ? 

o Loss function depends on 1θ  only 
§ E.g. y ~ 2( , )N µ σ , both unknown. Then 2( , )θ µ σ=  and 

L 2( , ) ( ( ))xθ δ µ δ= − . 
o Can show that the expected posterior loss involves the marginal 

posterior p( 1 1 2 2 1 2 2 2| ) ( , | ) ( | , ) ( | )y p y d p y p y dθ θ θ θ θ θ θ θ= =∫ ∫  
§ Note that the marginal posterior of 1θ  is a mixture of 

conditional posteriors given 2θ . 
§ When 2θ  takes discrete values (1,2,…,M), possibly denoting 

different models, then the posterior of 1θ  is a weighted average 
of posteriors given each model.  

• The weights depend on the combined evidence from the 
prior and the data, 2( | )p yθ . 

• This is the key idea underlying Bayesian Model 
Averaging (BMA). Given a strong belief in the prior 
specification, Bayesian need not select a model. BMA 
would minimize expected risk.  

 
§ We can always draw samples from the joint posterior p 1 2( , | )yθ θ .  

o If it is easier to sample from p( 2 | yθ ), draw samples from this 
distribution, and then for each of these samples, draw from 1 2( | , )p yθ θ . 
To obtain samples from p( 1 | yθ ), ignore the 2θ coordinate. 

 



Analysis for Normal Data, 2( , )N µ σ  with Non-informative prior 
 

§ Prior 2 2 2 1( | ) ; ( ) ( ) , i.e., ( ,ln )p c pµ σ σ σ µ σ−∝ ∝ ∼ Uniform 
 
§ Normal likelihood: Given ( , )µ σ , n iid observations lead to the sufficient 

statistics 2 2

1

1
, ( )

( 1)

n

iy s y y
n

= −
− ∑ and the likelihood function 

2 / 2 2 2
2

1
( ) exp{ [( 1) ( ) ]}

2
n n s n yσ µ

σ
− − − + −  

 
§ The posterior of 2( , )µ σ , proportional to likelihood times the prior, factorizes 

into two parts: 
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§ The first term represents the kernel of a Normal density with mean 

2, and var /y nσ , except for the constant 21/ 2 / nπσ .  
o When using the precision notation { 2(1/ )τ σ= }, we say that given y 

and ,τ  the conditional posterior of µ  is Normal with mean 
, and precision .y nτ   
§ Note that for a sample of size n, given ( , )µ σ ,  y  has a Normal 

distribution with precision nτ .  
 

§  For the marginal posterior of 2 or τ σ : 
o We must integrate out the first term corresponding to the conditional 

posterior of µ , given τ , in the above joint posterior expression. This 

yields a term proportional to 2σ  
§ Alternatively, the first term is proportional to 2* ( , / )N y nσ σ    
§ Now, the marginal posterior density of 2σ  is proportional to 

( 2) 1
2 212

12( ) exp{ }, where ( 1)
2

n

n s
ν

σ ν
σ

− + +

− = − .  

§ Note that this corresponds to an inverse-gamma density, or a 
scaled inverse chi-squared. For its summary statistic, mean, 
median and mode, see Table A.1 in the text book (pp 574).   



o However, in order to obtain the density of τ , we must account for a 
change of variables from 2σ  to τ .  Since, the absolute value of 

2 /d dσ τ  yields the term 2τ − , the marginal posterior density of τ  is 

proportional to 
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squared with (n-1) degrees of freedom and scale parameter 1ν , or a 
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§ Note that, the posterior density of 1ν τ  is a chi-squared random 
variable with (n-1) degrees of freedom, which is same as the 
sampling distribution of 2

1 ( 1)n sν = − .  
§ Given this non-informative prior on the parameters, the 

distribution of the pivotal quantity 
2

2

( 1)n s
σ
− remained 

unchanged.   
 
§ The posterior distribution of 2( , )µ σ  belongs to Normal-Inverted Gamma 

family, and that of ( , )µ τ  belongs to Normal-Gamma family. 
 

§ We can easily draw samples from this joint posterior by first drawing 
samples from a Gamma (scaled chi-squared), and then given each τ , draw a 
sample from the conditional Normal distribution of µ . 

 
§ For the Marginal Posterior of µ  

 
o Since, the conditional posterior distribution of µ  given τ  is Normal 

with mean 2, and var /y nσ , therefore, given τ   
                                   ( ) ~ (0,1)Z y n Nµ τ= − . 

§ Since the distribution of Z doesn’t depend on the conditioning 
variable τ , (Z, τ ) are independent random variables. 

§ Thus 1ν τ  is chi-squared random variable with (n-1) d.f., 
independent of Z.  

§ Hence, 
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Student’s t with (n-1) degrees 

of freedom. Thus, the marginal posterior of µ  is a t-distribution 
with location y and scale /s n .  



o Note that with this non-informative prior, the sampling 

distribution of the pivotal quantity, t = ( )n y
s

µ− also has 

the Student’s t distribution with (n-1) d.f. 
o  Note that the t-distribution represents a scale-mixture of 

Normal random variables, when the scale has an inverted 
Gamma distribution. 

 
§ Posterior-predictive density of Future Observation(s) 
 
o In order to predict a future observable y% , whose density depends on 

2( , )µ σ , we need to find the predictive density, p( y% |y), when the 
uncertainty about the parameters 2( , )µ σ is given by its posterior 

o Of course, given the samples from the posterior of 2( , )µ σ , and the 
density y% | 2( , )µ σ , one can now draw samples from the joint density of 
( , , )y µ τ% . Ignoring the second and third columns provides the samples 
from the posterior-predictive density of y% . 

o However, if the future observation is also from Normal 2( , )µ σ population, 
one can easily get the analytic expression of the posterior predictive 
density. 
§  Given 2( , )µ σ , y Zµ σ= +% , where Z is a standard Normal random 

variable.  
§  Furthermore, 2| ( , )yµ σ is Normal with mean 2, and var /y nσ , it 

follows that 2| ,y y σ%  is Normal with mean 2, and var (1 1/ )y nσ + . 

§ Hence, given ( , )y τ , 
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variable. Furthermore, since 1ν τ  is an independent Chi-squared 
random variable with (n-1) degrees of freedom, it follows that 
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%  has a t-distribution.  

§ In other words, the posterior-predictive density of y%  is a t-
distribution with location y and scale (1 )/s n n+ .  

• Note that if we want to predict m future observations from 
this same population, knowing that the 2,m my s% is the sufficient 
statistic, we can achieve this task by first predicting one 
observation from N 2( , / )mµ σ , as above, as well as one from 



the predictive density of 2
ms , which can be found similarly. 

Now, given 2,m my s% , the conditional distribution of 1 , , mY YL  
doesn’t depend on the parameters. Thus we can now draw 
Y’s from this distribution. 

 
§ The Example on the speed of light is worth reading, since in this case the 

outliers do not satisfy the normal model, and the posterior based on this data 
model does not look good. In fact, in this problem, the signal to noise ratio is 
very small, so the model has to be really good.  
o In fact, the values of the physical constants are reviewed every five years 

by the ‘Committee on Data for Science and Technology’ (CODATA), see, e.g., 
http://physics.nist.gov/cuu/Reference/contents.html and an interesting 
article on ‘implications of non-constant velocity of light’ at 
http://www.ldolphin.org/cdkconseq.html . CODATA evaluates the 
collection of observations made in the intervening five years for outliers 
etc, and then updates the values of physical constants. Of course, the 
change in a few least significant digits. 

 
Analysis of Normal data 2( , )N µ σ with conjugate Normal-inverted 
Gamma prior 
  
§ Given the likelihood of n iid observations from Normal, the conjugate prior 

should also have two terms of the same form. 
§ It suggests the conjugate Prior: 2 2

0 0| ~ ( , / )Nµ σ µ σ κ . [This prior is equivalent 
to the posterior from a state starting with uniform prior, and drawing 0κ with 
observed mean 0µ when the variance is known.] In addition, 
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§ Note that in the conjugate prior, the two parameters are dependent, but we 
are assigning independent distributions to 2( /  and 1/ )µ σ σ . The signal to noise 
ratio ( / )µ σ  is a very popular parameter in Engineering applications. 
o In effect, the prior is same as a random effect model for µ , which may 

not be suitable in some applications. [See the textbook on this issue.]   



§ On multiplying the likelihood by the prior, it is easy to see that the posterior 
is also a Normal-Inverted Gamma form with updated parameters 
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§ Again, sampling from this distribution is self-explanatory. 
§ Now, for the marginal posterior distribution of µ , following the discussion 

in the non-informative prior case, it is easy to see that we get a t-distribution 
with location 2

n and scale ( / )n nµ σ κ .  
§ Similarly, the predictive density of a future observation can be obtained. 

 
Analysis of Normal data with semi-conjugate prior  
 
§ In some applications, the prior on 2( , )µ σ  may be required to be 

independent. In this case, the joint posterior will not factorize any 
more, but one can still obtain the conditional and marginal 
posteriors.  

     
       

 
  

 


