
 Large-Sample Inference and Frequency Properties of 
Bayesian Inference:   
 
§ Home Work 2 – discussion 

 
Normal Approximations to the posterior distribution 
§ Joint posterior 

o Convenient to approximate a unimodal and roughly symmetric 
posterior density by a normal distribution, centered at the mode. 
§ Log posterior approximated as a quadratic function by a Taylor 

Series expansion. 
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• (Mode must be in the interior of the parameter space, and 

assume that the derivatives exist._ 
• First order term is zero since the first derivative at the 

mode is zero. 
 

§ Normal distribution with Unknown mean and variance 
o Using non-informative prior on ( ,log )µ σ , expand its posterior 

around the mode and approximate it by a joint normal 
 

§ Interpretation of the posterior density function relative to the density at the 
mode 

 
§ Summarizing posterior distributions by point estimates and standard errors 

o Transformations to an appropriately defined functions of the 
parameters can improve the normal approximation 

 
§ Data reduction and summary statistics 

o Posterior mode and its curvature at the mode 
o If normal approximation not good, these summaries may be 

misleading. 
 



§ Lower dimensional normal approximations 
o For a finite sample size, the normal approximation is 

typically more accurate for conditional and marginals than 
for the full joint dist 
§ Marginalizing leads to averaging over all other 

components of the parameter vector.  
§ Bioassay Experiment 

• Approximation in the main body may be OK. 
o May lose some of the tail features 

(skewness, and tail approximation) 
 
Large-Sample Theory 
 
§ Amount of data from some fixed sampling distribution, f(y), increases 
§ Asymptotic normality of the posterior distribution, even if the true 

distribution of the data is not within the parametric family under 
consideration 
o Modeled likelihood p(y| )θ and prior p(θ ) 
o If f(y) belongs to this family for some 0θ , then in addition to 

asymptotic normality, ‘consistency’ also holds. 
o If not, then the 0θ  is replaced by a density in the class, that is 

closest to the true f(y) in the Kullback Leibler distance. 
o The Fisher information ( )J θ  is an important component of the 

asymptotic distribution 
§ Asymptotic Normality and Consistency 

o Appendix B has the proof under some regularity conditions 
o Continuous function of the parameter and the true 0θ  is not on the 

boundary of the parameter space, twice differentiable 
o Express the second derivative at the mode in terms of the 

derivatives of the prior and the log-likelihood 
o As n increases the second term converges to its expectation 
o Likelihood dominates the prior in asymptotic sense 

§ So with large amount of data, eliciting prior is not that 
important 

§ For small amount of data, prior is critical  



• With no data, quality of expert knowledge is highly 
relevant 

 
Counter Examples to the Theorems 

  
§ Under-identified and non-identified parameters 

o Likelihood is same for many different points 
§ Recognize the problem exists and get more info or put some 

constraints on the parameter space 
§ Number of parameters increasing with sample size 

o Neyman-Scott Problem 
§ Aliases  

o Mixture models may have two modes 
§ Unbounded likelihood 

o Mode does not exist 
§ Improper Prior distributions 

o May lead to improper posterior 
§ Priors that the point of convergence 
§ Convergence to the edge of the parameter space 
§ Approximation not good in the tails  
 

    Frequency evaluation of Bayesian Inference 
 

§ Large Sample correspondence leads to normal approximation 
§ Similar interpretation as Frequency theory inference 

o Consistency 
o Efficiency 
o Decision analysis 
o Asymptotic unbiasedness 
o Confidence coverage  


