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Two of the critical issues that arise when examining DNA microarray data are (1) determination of which genes best discriminate
among the different types of tissue, and (2) characterization of expression patterns in tumor tissues. For (1), there are many genes that
characterize DNA expression, and it is of critical importance to try and identify a small set of genes that best discriminate between
normal and tumor tissues. For (2), it is critical to be able to characterize the DNA expression of the normal and tumor tissue samples
and develop suitable models that explain patterns of DNA expression for these types of tissues. Toward this goal, we propose a novel
Bayesian model for analyzing DNA microarray data and propose a model selection methodology for identifying subsets of genes that
show different expression levels between normal and cancer tissues. In addition, we propose a novel class of hierarchical priors for the
parameters that allow us to borrow strength across genes for making inference. The properties of the priors are examined in detail. We
introduce a Bayesian model selection criterion for assessing the various models, and develop Markov chain Monte Carlo algorithms
for sampling from the posterior distributions of the parameters and for computing the criterion. We present a detailed case study in
endometrial cancer to demonstrate our proposed methodology.
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1. INTRODUCTION

DNA microarrays and other high-throughpu t methods for
analyzing complex nucleic acid sequences now make it pos-
sible to rapidly, ef� ciently, and accurately measure the levels
of virtually all of the genes expressed in a biological sam-
ple. Two of the critical issues that arise when examining DNA
microarray data are (1) determination of which genes best dis-
criminate between the different types of tissue and (2) char-
acterization of expression patterns in tumor tissues. For (1),
because there are so many genes in the human genome, it is of
critical importance to possibly identify a small subset of genes
that best discriminate between normal and tumor tissues. For
(2), it is critical to be able to characterize the DNA expres-
sion of the normal and tumor tissue samples and to develop
suitable models that explain patterns of DNA expression for
these types of tissues.

In DNA microarray data, it is common to have thousands
of genes for a single individual and relatively few individu-
als in the dataset. Developing models for such data structures
can be complicated, and computational methods are generally
quite intensive. Literature on discrimination and cluster analy-
sis methods in DNA gene expression includes work by Eisen,
et al. (1998), Golub et al. (1999), Spellman et al. (1998),
Tamayo et al. (1999), Tibshirani et al. (2000), and Hastie
et al. (2000). Most of these methods use various types of
clustering algorithms, such as self-organizing maps, k-means
clustering, and hierarchical clustering, to discriminate and
characterize patterns of gene expression. The aim of these
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methods is to identify clusters of genes that show similar
expression patterns. However, none of these methods develop
statistical methods for modeling the gene expression levels
via a suitable parametric model, and thus they do not address
speci� c questions regarding formal assessment of the differ-
ences between the means of the tissue types for each gene or
assessment of the � t of a speci� c model to the data. Some
work has been done on using parametric models to charac-
terize patterns of gene expression by Newton, et al. (2001),
Chen, et al. (1997), and West, et al. (2000). Related work also
includes that of Efron, et al. (2001), who used a nonparametric
empirical Bayes procedure for gene pro� ling. However, these
methods are quite different than what we propose here and are
discussed in further detail in Section 5.

In this article we develop a novel class of parametric statis-
tical models for analyzing DNA microarray data. It is our goal
to build a suitable parametric model that allows us to com-
pare between normal and tumor tissues and to characterize the
genes that best distinguish between tissue types. In addition,
we wish to develop model assessment techniques so that we
can assess the � t of a class of competing models. The Bayesian
paradigm is very well suited for examining DNA microarrays,
because computation of the posterior distribution is all that is
required for making the desired inferences, such as the com-
putation of quantiles, standard deviations, credible sets, and
predictions. Because of the data structure of DNA microar-
rays, frequentist inference using parametric models does not
appear feasible, and computing variances and other quantities
based on asymptotic theory does not appear tenable. Thus the
Bayesian paradigm appears to be better suited for these types
of problems. The model that we propose here for modeling
gene expression is novel and has several attractive properties.
In Section 2 we describe the basic data structure for our DNA
microarray. In Section 3 we propose a parametric model for
gene expression data and derive some of its properties. In
Section 4 we propose a class of hierarchical priors for the
parameters that allow us to borrow strength across genes for
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making inferences. The properties of the priors are examined
in detail. In Section 5 we propose a gene selection algorithm
for identifying subsets of genes which may be different across
the groups, and in Section 6 we introduce a Bayesian model
selection criterion for formally assessing the various mod-
els derived from the gene selection algorithm. Markov chain
Monte Carlo (MCMC) algorithms for sampling from the pos-
terior distributions of the parameters and for computing the
criterion are also developed. We demonstrate our methodol-
ogy with a detailed data analysis of a dataset in endometrial
cancer in Section 7, and give a brief discussion in Section 8.

2. THE DATA STRUCTURE

The endometrial data analyzed here were obtained from the
Affymetrix Hu6800 DNA array. This array contains more than
7,000 probe sets, which are now thought to represent about
5,600 distinct genes. Each probe set consists of a number (gen-
erally 16–20) of perfect match and mismatch probe pairs. The
perfect match probe is a single-stranded DNA oligonucleotide
complimentary to a speci� c DNA sequence, approximately 25
bases long. The mismatch probe has a single base mismatch
at the central (i.e., 13th) position. Using a number of different
probe pairs obtained from the same gene should give greater
speci� city than is possible with a single probe.

The data analyzed here comprise interpreted relative expres-
sion levels given by the proprietary Affymetrix GeneChip soft-
ware. First, an average hybridization intensity is calculated for
each probe from the raw intensity levels read by the scanner.
Then the software calculates local background levels across
the array; these are subtracted from the intensities for the indi-
vidual probes. A � ltering algorithm is used to remove probe
pairs that give overly atypical results, and an average differ-
ence value is computed as the average of the differences in the
intensity of the binding to the perfect match minus the mis-
match probes in the remaining pairs. The algorithm also pro-
vides an absolute call of present (P), marginal (M), or absent
(A), based in part on a local calculation of noise and the pro-
portion of pairs in which there is greater binding to the mis-
match than the perfect match. The data we start with consist
of the average difference values, which represent relative lev-
els of expression of the corresponding gene in the sample, and
the absolute calls.

In addition to the average difference metric, the Affymetrix
software computes three other metrics, which are used in mak-
ing the absolute call. The three other metrics are the positive
fraction, the positive–negative ratio, and the log-average ratio.
The positive fraction and the positive–negative ratio are cal-
culated from the number of positive and negative probe pairs.
The log-average ratio is derived from the ratio of the perfect
match probe cell intensity to that of the control mismatch. The
absolute call is determined by examining the three analysis
metrics: the positive fraction, the positive–negative ratio, and
the log-average ratio.

Nonbiological factors can contribute to the variability of the
data in many biological assays. In DNA microarrays, varia-
tions in the amount and quality of target hybridized to the
array, the amount of stain applied, or other experimental vari-
ables may contribute to an overall variability in hybridiza-
tion intensities. To reliably compare data from multiple probe

arrays, differences of nonbiological origin must be minimized
through a process known as normalization . In the dataset that
we examine, the data were normalized as follows. For each
sample, the raw average difference values, regardless of the
call or the sign of the value, were rescaled to sum to 3,000,000
over all genes. Then average difference values below 20 were
set to 20, and the average difference for any probe set with a
call of A or M was also set to 20, regardless of the value. This
was done in part because the technology was not thought to
accurately discriminate among low levels of expression. The
value of 20 is arbitrary, but the results are not restrictive to the
exact cutoff used. Thus our data analysis uses the four met-
rics mentioned earlier. The average difference is used as the
measure of expression level, and the absolute call is used to
determine which values are set to 20.

In addition, there are two primary reasons for truncating the
values. First, the Affymetrix technology is thought to produce
poor discrimination at low levels of expression (which was
mentioned by, e.g. Tamayo et al. 1999). Second, we want to
draw inference on expression of identi� ed genes and expressed
sequence tags. Differences at low levels (especially at nega-
tive values) quite possible result from differences in binding to
the mismatch probes, rather than binding to the perfect match
probes. What will bind to the mismatch probes is generally not
known, so the differences at low or negative expression levels
cannot be reliably attributed to the differences in expression of
the target genes. If we were only interested in using the array
as a predictor and not in inferences on genes, then there prob-
ably would be additional information in the low values that
we are not using. The threshold of 20 is somewhat arbitrary
but has been used elsewhere for this chip (Tamayo et al. l999),
and the inferences are not very sensitive to the exact thresh-
old value (e.g., 10, 30, etc.). The Affymetrix call is a measure
of both whether the expression level indicates that the gene is
present and of the reliability of the calculated expression level
as a measure of the expression of the target gene. In the same
spirit of drawing inference on expression of identi� ed targets,
we decided to also set calls other than present to the threshold
value.

For our choice of normalization, we note that GeneChip
applies an algorithm and produces an expression level. We
believe that analyzing those levels is valid. However, there is
obvious sample-to-sample variation in overall expression lev-
els, and to try to eliminate some of this variation we rescaled
to a common overall level. Here we do not consider more elab-
orate schemes, such as nonparametric regression calibration,
because they also involve arbitrary choices and their motiva-
tion is less clear than for global rescaling. We use the value
3,000,000 in our dataset because the rescaled sum of expres-
sion levels needs to take a common value and we needed
to choose some number for that common level. The value
3,000,000 is somewhat arbitrary, but the justi� cation for this
choice is based on the fact that it is near the center of the sums
of the unnormalized values, which ranged from 1,323,548 to
5,300,324, and affects the inferences only through its relation-
ship with the lower threshold of 20.

The study that we examine here involves patients with
endometrial cancer. Identifying gene expression patterns
between normal and cancer tissue for this disease is critical,
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because it can shed light on the genes that play a major role
for endometrial cancer. This critical information can be used
to determine heritability of the disease as well as target appro-
priate therapies for treating this disease.

The data for this speci� c study comprise 14 individuals
(samples). Of these 14 individuals, 4 are normal tissues and
10 are endometrial cancer tissues. Because values below 20
and values with a call of A or M were set to 20, nearly two-
thirds of the expression levels were set to 20. Probe sets with
resulting value above 20 for fewer than three genes were then
excluded from the analysis, leaving data from 3214 genes
for each individual. Thus the dataset consists of a 3214 � 14
contingency table of gene expression levels, where genes
are represented by rows (3214 rows) and the individuals are
represented by the columns (14 columns), resulting in a total
of 3214 � 14 D 441996 gene expression levels. Table 1 gives
the number of genes (rows) with expression levels set equal to
20. For example, in the � rst row of Table 1, 805 genes (rows)
in the contingency table had all expression levels not equal to
20 over all 14 individuals. Similarly, the second row of Table
1 reveals that 228 genes (rows) in the contingency table had
exactly 1 gene expression level set equal to 20 over all 14
individuals, and so forth.

3. THE GENERAL MODEL

Our goal is to develop a statistical model that allows us to
characterize the gene behavior in normal and cancer tissues.
Toward this goal, we develop the general model as follows.
Suppose that we have two tissue types (normal and tumor)
with nj individuals available for each tissue type, and suppose
that G genes are measured for each individual. Let x denote
the expression level for a given gene, which is the normalized
average difference as discussed previously. Because so many
of the genes are not expressed, (i.e., take the value 20 for our
dataset), the random variable x can be viewed as a mixture
random variable with a discrete and continuous component.
The discrete component is a point mass at c0 (c0 D 20 for the
endometrical cancer data), and the continuous component y is
the expression level of the gene. Thus c0 is the threshold value
for which a gene is considered as not expressed. Therefore,
if x D c0, then the gene is said to be not expressed, that is,
absent. If x D c0 C y, then the gene is said to be positively

Table 1. Summary of Endometrial Cancer Data

Number of
gene expression

levels set Cumulative Cumulative
equal to 20 Frequency Percent frequency percent

0 805 2500 805 2500
1 228 701 1033 3201
2 209 605 1242 3806
3 181 506 1423 4403
4 192 600 1615 5002
5 159 409 1774 5502
6 208 605 1982 6107
7 212 606 2194 6803
8 214 607 2408 7409
9 223 609 2631 8109

10 280 807 2911 9006
11 303 904 3214 10000

expressed, that is, present. Let p D P4x D c05, and thus the
mixture random variable x can be written as

x D
(

c0 with probability p

c0 C y with probability 1 ƒ p0
(1)

We take y to have a lognormal distribution. This general para-
metric model appears to be quite natural for modeling gene
expression data. Let j D 112 index the tissue type (normal vs.
tumor) and let xjig denote the gene expression mixture ran-
dom variable for the jth tissue type for the ith individual,
i D 1121 : : : 1 nj , and the gth gene, g D 11 : : : 1G. Similarly,
yjig denotes the continuous component of the gene expression
level for the jth tissue type for the ith individual and the gth
gene. Conditional on the parameters (Œjg1‘

2
jg), we assume that

y1111 : : : 1 y21 n2 1 G are independent each with lognormal density

p4yjig—Œjg1‘
2
jg5 D 42� 5ƒ1=2yƒ1

jig‘
ƒ1
jg

� exp ƒ
1

2‘ 2
jg

4log4yjig5 ƒ Œjg5
2 0 (2)

In Section 4 we discuss how the priors incorporate possible
dependence among the genes. Now let „jig D 1 if xjig D c0

and 0 otherwise. Also, let pjg D P4xjig D c05 ² P4„jig D 15,
and 1 ƒ pjg D P4xjig D c0 C yjig5, Ä D 4„1111 : : : 1 „21 n21 G5,
Ì D 4Œ111Œ21 ¢ ¢ ¢Œ1G1 Œ2G5, Ñ2 D 4‘ 2

111‘
2
211 : : : 1‘ 2

1G1‘ 2
2G5,

and p D 4p111p211 : : : 1 p1G1 p2G5, i D 11 : : : 1 nj , j D 11 2, g D
11 : : : 1G. Letting È D 4Ì1Ñ21p5, the likelihood function for
È based on the data D D 4x1111 : : : 1 x21 n21 G1Ä5 is thus given by

L4È—D5

D
2Y

jD1

njY

iD1

GY

gD1

p
„j ig

jg 41ƒ pjg5
1ƒ„j ig p4yjig —Œjg1‘

2
jg51ƒ„jig 1 (3)

where p4yjig—Œjg1‘
2
jg5 is as given in (2).

A fundamental question of interest is which genes best dis-
criminate between the normal and tumor tissues. That is, it
is of interest to characterize the behavior of the posterior dis-
tribution of 4Ì1 Ñ21 P5 with respect to the normal and tumor
tissues. Toward this goal, let

–jg D EÄ1 y6c0„jig C 41 ƒ „jig54c0 C yjig5—pjg1Œjg 1‘ 2
jg71 (4)

where y D 4y1111 : : : 1 y21 n21 G5 and the expectation is with
respect to the joint distribution of 4Ä1y5. Thus we have

–jg D c0pjg C 41ƒ pjg54c0 C E4yjig—Ì1Ñ255

D c0pjg C 41ƒ pjg5

³
c0 C exp Œjg C

‘ 2
jg

2

´
0

Comparing the gene expression level means between the nor-
mal and cancer tissues, we compute the posterior distribution
of

�g D –2g=–1g (5)

for each g D 11 : : : 1G. From these G posterior distributions,
we can compute various posterior summaries, including the
posterior mean, standard deviation, quantiles, and probabilities
such as P4�g > 1—D5, g D 11 : : : 1 G.
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4. PRIORS

Prior elicitation plays a critical role in this model. We wish
to specify a class of priors that creates a correlation between
the genes for a given individual. We do this by specifying a
hierarchical prior as follows. First, for Œjg we take

Œjg —‘ 2
jg1Œj0 N 4Œj01 ’0‘

2
jg= Nnj51 (6)

where

Nnj D
1
G

GX

gD1

³
nj ƒ

njX

iD1

„jig

´
1 (7)

’0 > 0 is a speci� ed scalar, and Œjg—‘ 2
jg 1Œj0 are independent

for all 4j1 g5. We note that a solid feature of the prior con-
struction in (7) is that it allows us to incorporate genes for
which xjig D c0 for all i D 11 : : : 1 nj for a given 4j1 g5. That
is, it allows us to include genes that are unexpressed for all of
the individuals within a given tissue type, therefore resulting
in a more � exible and general prior. We also take independent
inverse gamma ( IG) priors for ‘ 2

jg and thus take

‘ 2
jg IG4aj01 bj051 (8)

where 4aj01 bj05 are hyperparameters for j D 112. The prior
speci� cation scheme is quite general in that it allows for dif-
ferent hyperparameters for the normal and tumor groups. The
genes for a given individual are correlated, and thus we need
to build in a prior correlation between the genes for a given
individual and tissue type. To do this, we specify a prior on
the values of Œj0 in (6). We take

Œj0 N 4mj01 v2
j051 j D 1120 (9)

We note here that in our model formulation, we allow mj0 to
depend only on j. A more general formulation would be to
let mj0 also depend on g, leading to a mean of mjg0. How-
ever, doing this would make it dif� cult to borrow strength. Our
assumptions here may be biologically plausible if the genes
being examined are close to each other on the chromosome.
Also, our model assumptions may be tenable if the genes have
similar chemical and biological behaviors. Both of these are
common scenarios in DNA microarray data. In any case, our
model may be viewed as an approximation to the more com-
plex model that allows mj0 to depend on g.

The hyperprior on the values of Œj0 in (9) induces a priori
correlation between all of the values of Œjg . After some alge-
bra, it can be shown that unconditional on Œj0,

4Œjg1 Œjg0 50 N24Ì
ü 1è ü 51

where Ì ü D 4mj01mj05
0 and

è ü D

0
@

’0‘
2
jg

Nnj
C v2

j0 v2
j0

v2
j0

’0‘
2
jg 0

Nnj
C v2

j0

1
A 0

From this derivation, we see that

corr4Œjg 1Œjg0 —‘ 2
jg 1‘ 2

jg 0 1 vj05

D
v2

j0

86’0‘
2
jg= Nnj C v2

j076’0‘
2
jg0 = Nnj C v2

j079
1=2

0

This correlation structure has interesting features. We see that
as v2

j0 ! ˆ or Nnj ! ˆ, corr4Œjg1 Œjg0 —‘ 2
jg1‘

2
jg0 1 vj05 ! 1. This

implies that more strength is borrowed as v2
j0 is increased or

Nnj is increased. For the prior for ‘ 2
jg in (8), we take aj0 � xed

and bj0 random for our hierarchical prior. Speci� cally, we take
a gamma prior for bj0, that is,

bj0 gamma4qj01 tj051 (10)

where 4qj01 tj05 are speci� ed hyperparameters. This prior spec-
i� cation gives us more � exibility and control in borrowing
strength across genes as compared to taking 4aj01 bj05 as � xed
hyperparameters. Speci� cally, the prior on bj0 in (10) allows
a great deal of control in inducing prior correlation between
the genes.

For the values of pjg , we specify the prior as follows. We
� rst let

ejg D logit4pjg5 D log
³

pjg

1ƒ pjg

´
(11)

and then specify a normal prior on the values of ejg , thus
inducing a prior on the values of pjg . Thus we take

ejg N 4uj01 kj0w
2
j051 j D 1120 (12)

We choose the prior in this way because it is computationally
more stable than a direct prior speci� cation on the values of
pjg . Finally, for the prior for ejg in (12), we take

uj0 N 4 Ouj01 hj0w
2
j051 j D 1120 (13)

In (12) and (13), k0 D 4k101 k2051h0 D 4h101h205, and w2
j0, j D

11 2, are the speci� ed hyperparameters.
In general, if we do not have suf� cient historical data or

expert opinion for specifying 4mj01 v2
j05 and 4 Ouj01 w2

j05, then it
is desirable to have a set of guide values on which sensitivity
analyses can be based. Toward this goal, we propose some
potential data-based guide values for these hyperparameters.
Because mj0 represents a mean gene expression level on the
natural logarithm scale, a guide value for mj0 is

mj0 D
1
Nj

njX
iD1

GX
gD1

41ƒ „jig5 log4yjig51 (14)

where Nj D Pnj

iD1

PG
gD141 ƒ „jig5. Thus a reasonable guide

value for mj0 is the gene sample mean on the natural logarithm
scale over all individuals for tissue type j . For v2

j0, we take
v2

j0 D ‡j0MSGj , where MSGj D 1=4G ƒ 15
PG

gD1 njg4mjg0 ƒ
mj05

2, mjg0 D 4
Pnj

iD141 ƒ „jig5 log4yjig5=
Pnj

iD141 ƒ „jig55, and
njg D nj ƒ Pnj

iD1 „jig for j D 11 2, and Ç0 D 4‡101‡205 is a
vector of chosen scalers. Thus MSGj is the mean square
of error between genes on the natural logarithm scale. A
guide value for tj0 is tƒ1

j0 D dj0MSEj , where MSEj D 1=4Nj ƒ
G5

PG
gD1

Pnj

iD141ƒ„jig54log4yjig5ƒmjg05
2 for j D 11 2 and d0 D

4d101 d205 is a vector of chosen scalars. We see that MSEj is
just the mean squared error for the gene expression levels on
the natural logarithm scale for tissue type j. Thus a reasonable
guide value for t1

j0 is a scalar multiple of the MSE for the jth
tumor type.
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For Ouj0 in (13), we propose a guide value of Ouj0 D
log441=G5

PG
gD1 Opjg=1 ƒ 41=G5

PG
gD1 Opjg5, where Opjg is the

sample proportion of gene expression values equal to c0 over
all of the individuals for the jth tumor type. This guide value
for uj0 seems quite suitable based on the de� nition of ejg

in (11). Finally, for w2
j0, we take a guide value of the form

w2
j0 D 8441=G5

PG
gD1 Opjg541ƒ41=G5

PG
gD1 Opjg59ƒ1. Thus we see

that the guide value for w2
j0 is just the frequentist variance of

41=G5
PG

gD1 Opjg .
Finally, we note that at � rst sight our model appears to be

highly parameterized. However, we note that the parameters
of primary interest in our model are Œj01 vj01mj01 aj0, and bj0,
and the remaining parameters are nuisance parameters. Thus
we have a total of 10 primary parameters of interest. In this
sense our model is not highly parameterized and is in fact, not
overparameterized.

5. GENE SELECTION

The fundamental problem is to identify which genes are dif-
ferent between the two tissue types. In this article we develop
the following procedure for determining this:

1. Compute the posterior distributions of all the values of
�g , g D 11 : : : 1 G, and for each �g compute

ƒg D P4�g > 1=D50

2. Select a “threshold” value, denoted by ƒ0, for ƒg , for
determining which genes are different. Possible values
of ƒ0 might be ƒ0 D 07, ƒ0 D 08, ƒ0 D 09, and ƒ0 D 095.
Thus if, for example, ƒ0 D 07, then gene g is declared to
be different for the two tissue types if P4�g > 1—D5 ¶ 070
or P4�g > 1—D5 µ 030. We use this technique as a device
for selecting subset models, which are then compared to
the overall “full” model.

3. Once a set of genes is declared different using the crite-
rion in step 2, then set the mean parameters for the tis-
sue types to be unequal for that gene in the model. That
is, if P4�g > 1—D5 ¶ ƒ0 or P4�g > 1—D5 µ 1 ƒ ƒ0, then
set Œ1g 6D Œ2g . Otherwise, set Œ1g D Œ2g ² Œg , where Œg

is treated as unknown. Thus this process creates a sub-
model from the full model for each chosen ƒ0. Different
values of ƒ0 will lead to different submodels. We note
that each Œg gets assigned a prior that is elicited in a
similar fashion as was done for Œjg .

4. Create several submodels using several values of ƒ0 and
using the algorithm in step 3. We then evaluate all the
submodels using a Bayesian criterion. The criterion that
we use to evaluate the models is called the L measure.
We brie� y describe the L measure in Section 6.

5. The model with the smallest L measure is deemed the
best-� tting model.

As mentioned in Section 1, three other articles use paramet-
ric model-based approaches for identifying differential gene
expression. Chen et al. (1997) considered a frequentist model-
based hypothesis testing approach for characterizing differen-
tial gene expression. They � rst assumed that the gene expres-
sion levels are independently normally distributed random
variables in the normal and tumor tissue groups, and then

derive the approximate distribution of the ratio Tk D Rk=Gk

assuming a constant coef� cient of variation. Here Tk is the
ratio of the red (Rk) to green (Gk) intensity for gene k. Once
the distribution of Tk is derived, a test statistic based on Tk is
calculated for testing the null hypothesis of equality of mean
expression levels, and approximate con� dence intervals of the
test statistic are derived. Newton et al. (2001) took a different
approach than Chen et al. (1997) in that they � rst modeled
Rk and Gk as independent gamma random variates with con-
stant shape parameter and a scale parameter that depends on
the gene index k. They then derived the density of the ratio
Tk, which is indexed by the parameter � D ŒR=ŒG , where
ŒR D E4Rk5 and ŒG D E4Gk5. The hierarchical model is com-
pleted by specifying a prior for the gamma scale parameters
and carrying out the inference based on the posterior distribu-
tion of �. The hyperparameters in the hierarchical model are
estimated from the data using the marginal likelihood of the
data.

West et al. (2000) considered an approach based on pro-
bit and linear regression for characterizing differential gene
expression. They started out with a probit model for the data
for which there is a binary clinical outcome response vari-
able, such as estrogen receptor (ER) status in breast cancer,
and the covariates consist of the gene expression levels. The
binary response variable is then transformed into a continuous
variable via latent variables, and a linear regression model is
used to develop the methodology. Because the linear regres-
sion model is overparameterized, West et al. (2000) described
techniques based on the singular value decomposition to make
the model identi� able and considered a class of generalized
singular g priors (Zellner 1986) for the regression coef� cients.
Then inference is based on the posterior distribution of the lin-
early transformed regression coef� cients. Efron et al. (2001)
considered a nonparametric approach to gene pro� ling. Their
problem involved characterizing gene expression for a group
of patients receiving treatment versus those not receiving treat-
ment. Unlike in the other three approaches discussed above,
here Efron et al. (2001) did not use a fully parametric model,
but rather considered an empirical Bayes approach to obtain a
nonparametric estimate of the probability that a particular gene
was affected by the treatment. All of these four approaches are
quite different than the model (3) proposed in this article. First,
we model the gene expression level as a mixture random vari-
able, taking into account the absolute call in the Affymetrix
chip in the modeling scheme. Furthermore, we use a lognor-
mal model for the continuous part of the mixture unlike the
aforementioned approaches. Third, we consider novel classes
of priors that induce correlation structures between genes and
use a gene selection algorithm along with the L measure statis-
tic for evaluating models.

6. THE L MEASURE FOR MODEL ASSESSMENT

To evaluate the possible models that arise from our gene
selection procedure described in Section 5, we consider a use-
ful Bayesian criterion, the L measure, originally introduced
by Ibrahim and Laud (1994) and Laud and Ibrahim (1995).
This criterion is constructed from the posterior predictive dis-
tribution of the data and can be written as a sum of two com-
ponents, one involving the means of the posterior predictive
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distribution and the other involving the variances. It can be
viewed as a Bayesian goodness-of-� t statistic that measures
the performance of a model by a combination of how close its
predictions are to the observed data and the variability of the
predictions. The L measure can be used as a general model
assessment tool for comparing models and assessing goodness
of � t for a particular model, and thus in this sense this crite-
rion is potentially quite versatile.

The construction of the L measure relies on the notion of
an imaginary replicate experiment. Let z D 4z1111 : : : 1 z21 n2 1 G5
denote future values of a replicate experiment. That is, z is a
future response vector with the same sampling density (likeli-
hood) as x—È, where x is de� ned by (1) and the corresponding
likelihood (3). Thus zjig is of the form

zjig D c0 with probability p

c0 C rjig with probability 1ƒ p1
(15)

where rjig has the lognormal density in (2). For convenience
of notation, denote the sampling density of x by p4x—È5 and
that of z by p4z—È5. Here we note that x and z may represent a
transformation of the original data, such as logarithms. In the
analyses of Section 7, we take the logarithms of x. The idea of
using a future response vector z in developing a criterion for
assessing a model or comparing several models has been well
motivated in the literature by Geisser (1993) and the many
references therein, along with Ibrahim and Laud (1994), Laud
and Ibrahim (1995), Gelfand and Ghosh (1998), and Ibrahim,
Chen, and Sinha (2001). The imagined replicate experiment
makes x and z directly comparable and exchangeable a priori.
It seems clear that good models should make predictions close
to what has been observed for an identical experiment. With
this notion in mind, Ibrahim and Laud (1994) de� ned their
statistic as the expected squared Euclidean distance between
x and z, given by the statistic

L IL D E64z ƒ x504z ƒ x571 (16)

where the expectation is taken with respect to the posterior
predictive distribution of z—D, given by

p4z—D5 D
Z

p4z—È5p4È—D5dÈ1 (17)

and p4È—D5 denotes the posterior distribution of È. Straight-
forward algebra shows that L IL can be written as

L IL D
GX

gD1

2X
jD1

njX
iD1

8var4zjig —D5 C 4E4zjig —D5 ƒ xjig5
291 (18)

and thus L IL can be written as a sum of two terms, one term
involving the predictive variances and the other like a bias
term involving the squared difference between the predictive
means and the observed data.

A more general version of (17) has been developed by
Ibrahim, Chen, and Sinha (2001) and takes the form

L D
GX

gD1

2X

jD1

njX

iD1

var4zjig —D5

C �
GX

gD1

2X
jD1

njX
iD1

4E4zjig—D5 ƒ xjig521 (19)

where 0 < � < 1. The quantity � plays a major role in (19), it
can be interpreted as a weight term in the squared bias com-
ponent of (19). Ibrahim and Laud (1994) used � D 1 and thus
gave equal weight to the squared bias and variance compo-
nents. Allowing � to vary between 0 and 1 gives us a great
deal of � exibility in the trade-off between bias and variance,
and thus results in values of � that are more desirable than
the others. This suggests the question of whether certain val-
ues of � are “optimal” in some sense for model selection pur-
poses. Ibrahim et al. (2001) addressed this optimality issue for
the linear model and theoretically showed that certain values
of � yield more highly desirable properties of the L measure
than other values of �. Based on their theoretical exploration,
� D 1=2 is a desirable and justi� able choice for model selec-
tion.

It can be shown that (19) can be expressed as a posterior
expectation, so that

L D
GX

gD1

2X

jD1

njX

iD1

©
EÈ—D4E64zjig52—È75 ƒ Œ

4z5

jig

ª

C �
GX

gD1

2X
jD1

njX
iD1

4Œ
4z5
jig ƒ xjig5

21 (20)

where Œ
4z5

jig D EÈ—D6E4zjig—È57. Thus (20) can be computed by
sampling from the posterior distribution of È via MCMC
methods. Once the posterior samples of È are obtained, (20)
can be easily evaluated. The L measure in (20) is � nite as long
as the � rst two moments of z—È are � nite, and the expectation
of p4z—È5 is � nite with respect to the posterior distribution
p4È—D5.

Here we mention that the lognormal component of the
model given in (2) has location and scale parameters depend-
ing on tissue type 4j5 and gene 4g5. This is a general devel-
opment that allows both the mean and the variance of the
expression level to depend on the tissue type as well as on the
gene. Because our main goals here are to assess differential
gene expression level across tissue types and to characterize
the genes that have similar expression levels, specifying a gen-
eral model that allows for the mean and the variance of the
expression level to depend on the tissue type as well as the
gene is critical for our development. A simpler parameteriza-
tion would not allow us to assess the general gene expression
patterns that arise between the tissue types and across the dif-
ferent genes. In addition, (3) can be viewed as the “full model”
in some sense, because in our gene selection algorithm we do
simplify the parameterization of the model through the L mea-
sure statistic, which is based on the data. Thus we prefer to let
the data dictate the simpli� cation in the parameterization via
the L measure statistic rather than make this assumption at the
outset. The L measure is a very valuable model assessment
statistic that lets the data dictate a simpler parameterization
for our model.

In addition, the parameters Œjg1‘ jg , and pjg can be viewed
as random effects in our model, and all have prior distribu-
tions whose hyperparameters do not depend on the gene index
g, thus simplifying the parameterization a lot. Thus, viewing
our model as a random-effects type model with appropriate
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hierarchical priors, we can see that the model indeed is not
highly parameterized. Also, as long as the priors are proper
for our model, the joint posterior distribution of all of the
parameters will always be proper. We also note that for each
4j1 g5 combination, we have nj observations, so that there is
“replication” in some sense, and thus the model in (3) is in
fact not overparameterized. We also note that at � rst sight,
the model appears to be highly parameterized. However, we
note that the parameters of primary inferential interest in our
model are Œj01 vj01 mj01 aj0, and bj0 (none of which depend on
the gene index g), and the remaining parameters are nuisance
parameters. Thus we have a total of 10 primary parameters of
interest. In this sense, our model is not highly parameterized
at all, and in fact is not overparameterized.

7. CASE STUDY IN ENDOMETRIAL CANCER

Here we consider the endometrial cancer dataset described
in Section 2. Our main focus in this application is to identify
subsets of genes that have markedly different expression lev-
els between the normal and cancer tissues. We do this using
our proposed model, the gene selection algorithm, prior distri-
butions, and the L measure. In addition, we demonstrate how
various choices of prior parameters affect the number of genes
selected and model choice in general.

For these data, the normalization was carried out as fol-
lows. The raw average difference values, regardless of the call
or the sign of the value, were rescaled within each sample to
sum to 3,000,000 over all of the genes. Then values below 20
and values with a call of A or M were set to C0 D 20. First,
we consider the cases for which ƒ0 D 071 0801 090, and .95, and
under each case identify which genes are different. Table 2
shows the number of genes declared to be different under each
criterion. For Tables 2 and 3, the prior hyperparameters are
taken to be the guide values. Thus for Œj0, we take m10 D 6026,
m20 D 6018, v2

10 D 4050‡10, and v2
20 D 10034‡20. The hyper-

parameters for bj0 are t2
10 D 0169dl0 and t2

20 D 0268d20, and
the hyperparameters for ej0 are Ou10 D ƒ0806, Ou20 D ƒ0602,
w2

10 D 4069, and w2
20 D 4037. In both Tables 2 and 3, we

take ‡10 D ‡20 D d10 D d20 D k10 D k20 D h10 D h20. Thus
(Ç01d01 k01 h05 D 001 implies that ‡10 D ‡20 D d10 D d20 D
k10 D k20 D h10 D h20 D 001.

From Table 2 we see that as ƒ0 is increased, fewer genes are
identi� ed as being different. For example, under moderately
informative priors, when ƒ0 D 095, 178 genes were declared
as different, and when ƒ0 D 070111350 genes were declared
as different. Table 3 shows the posterior means and standard
deviations of the values of Œj0 and the L measure values (using

Table 2. Number of Genes Declared to be Different Based on Several
Choices of Hyperparameter Values for Œj 0 and ej g With Various

Choices of ƒ0

(‡01d01k01h0)

ƒ0 001 002 005 010

.95 178 167 154 115

.90 316 290 271 283

.80 695 668 629 674

.70 1,350 1,266 1,191 1,209

Table 3. Posterior Summaries for the Full Model Using Several
Choices of Hyperparameter Values for Œj 0 and ej g

Mean

(‡01d01k01h0) Normal tissue Cancer tissue L measure

.01 6.08 (.013) 6.013 (.0097) 180,837

.02 6.08 (.013) 6.015 (.0099) 177,047

.05 6.08 (.013) 6.016 (.0099) 167,057

.10 6.08 (.013) 6.016 (.0099) 155,624

NOTE: Standard deviations are in parentheses.

� D 1=2) for the full model using various choices of prior
parameters. We see from Table 3, that if the prior becomes
too informative, i.e., (Ç01d01k01h05 is very small, then the L
measure value for the model is large. Despite the difference
in L measure values, the posterior means and standard devi-
ations of Œj0 are very robust as the prior parameters are var-
ied. We see that the posterior mean [with standard deviation
(SD)] for Œ10 is 6.08 .013 and the posterior mean for Œ20 is
approximately 6.016 (.0099) for nearly all of the choices of
(Ç01d01k01 h05 reported SD in Table 3.

Tables 4 and 5 compare our results with the PERMAX cri-
terion developed by Mutter et al. (2001). In PERMAX, stan-
dard pooled variance t statistics for comparing normal tis-
sues to tumor tissues are computed for each gene. We let tg

denote the t statistic for the gth gene. To nonparametrically
determine the signi� cance of each gene while controlling the
overall error rate, we use the permutation distribution of the
most extreme statistics over all the genes. Because the dis-
tributions of the t statistics are not symmetric with unequal
group sizes, this is done separately in each tail. Assuming that
positive values of tg indicate higher values in normal tissues,
and letting t4p5 be the maximum statistic over all the genes
for the pth permutation, the p value for gene g in the direc-
tion of higher expression in normal tissues is the proportion
of permutations where the observed tg is ¶t4p5, with a simi-
lar calculation in the opposite tail for differences in the oppo-
site direction. Software for PERMAX analysis is available at
http://biowww.dfci.harvard.edu/ gray. For the analysis of the
endometrial data using PERMAX, the expression levels were
normalized and truncated as described earlier. Only the genes
with at least 2 values above 20 were considered (3,214 genes),
because the t statistic is unde� ned for genes with all values
equal to 20, and the statistic is either 1.69 or ƒ062 when only
one value is not equal to 20. Log expression levels were used
in the statistics, because it is natural to think of differences
between tissue types as a multiplicative effect of fold increase
or decrease. Genes with p values below 025 in either direc-
tion were selected as being the most interesting for possible
further examination.

For our proposed model, the hyperparameters for the infor-
mative and moderate priors used in Tables 4 and 5 are
(Ç01d01k01 h05 D 001 and (Ç01d01k01h05 D 1. We see that the
PERMAX criterion identi� es 47 genes as being different in the
tumor and normal tissues. The � rst column in Table 4 gives
a blinded gene code. The next four columns are indicators
which show the results for the 95%, 90%, 80%, and 70% cri-
teria; in these columns where a 1 means that the gene satis� ed

http://biowww.dfci.harvard.edu/%7Egray
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Table 4. Comparisons With PERMAX Criterion: Informative
Priors (‡0 D .01, d0 D .01, k0 D .01, h0 D 0.01)

Gene code 95% 90% 80% 70% Probability

x1047 0 1 1 1 .0764
x1195 0 0 0 1 .7791
x1222 0 0 0 0 .6276
x1223 1 1 1 1 .9615
x1271 1 1 1 1 .9967
x1469 0 0 1 1 .1080

x151 0 0 0 1 .2598
x1553 1 1 1 1 .9937
x1629 0 0 0 1 .7100
x1661 0 1 1 1 .9156

x197 0 0 1 1 .1765
x2140 0 0 0 0 .4043
x2192 0 0 1 1 .8468
x2341 0 0 1 1 .8579
x2404 0 0 0 0 .6488
x2590 0 0 1 1 .8103
x2719 0 0 0 1 .7111
x2797 0 0 0 0 .4557
x3108 0 0 0 1 .7065
x4293 0 1 1 1 .9496
x4495 1 1 1 1 .0128
x4535 0 0 0 0 .4968
x4685 0 0 0 0 .6931
x4693 0 1 1 1 .9263
x4880 0 0 0 1 .7280
x4985 0 0 0 1 .2566
x5023 0 0 0 0 .4504
x5238 1 1 1 1 .9637
x5284 0 0 0 1 .7539
x5442 0 0 1 1 .1464
x5612 1 1 1 1 .0057
x5624 1 1 1 1 .0027
x5757 1 1 1 1 .0001
x5912 1 1 1 1 .9998
x6197 0 0 0 1 .7038
x6235 0 0 1 1 .8232
x6335 1 1 1 1 .9950
x6741 0 0 1 1 .8231
x7019 1 1 1 1 .9792
x7065 0 1 1 1 .9181

x724 0 0 1 1 .8563
x860 0 0 0 0 .6391
x879 0 0 1 1 .1199
x881 0 0 0 1 .7943
x935 1 1 1 1 .9767
x723 1 1 1 1 .0034

x2670 1 1 1 1 .0279

Sum 14 19 29 39

the criterion. Thus for gene x1047 for example, the 95% crite-
rion is 0, which means that the posterior probability of �x1047

was not greater than .95 or less than .05; in fact, it was .0764.
The last row in Table 4, labeled “Sum,” gives the sum of the
genes from the PERMAX criterion that satisfy the 95%, 90%,
80%, and 70% criteria. That is, this row gives us the number
of genes that were identi� ed both by the PERMAX criterion
and our criteria—the number of genes that overlapped. For the
95% criterion, 14 genes overlapped; for 90%, 19 genes over-
lapped; for 80%, 29 genes overlapped; and for 70%, 39 genes
overlapped. These results thus show that the degree of over-
lap is monotonically increasing with a decreasing percentage
criterion.

Table 5 gives the same comparisons but with moderate pri-
ors. We see that when more moderate priors are considered,
we get a much higher degree of overlap, because more genes

Table 5. Comparisons With PERMAX Criterion: Moderate Priors
(‡0 D 1, d0 D 1, k0 D 1, h0 D 1)

Gene code 95% 90% 80% 70% Probability

x1047 0 0 1 1 .1110
x1195 1 1 1 1 .0385
x1222 1 1 1 1 .0279
x1223 1 1 1 1 .9614
x1271 1 1 1 1 .9957
x1469 1 1 1 1 .0097

x151 1 1 1 1 .0173
x1553 1 1 1 1 .9932
x1629 1 1 1 1 .0404
x1661 0 1 1 1 .9216

x197 1 1 1 1 .0157
x2140 1 1 1 1 .0347
x2192 0 1 1 1 .0623
x2341 1 1 1 1 .9699
x2404 0 1 1 1 .0595
x2590 1 1 1 1 .0462
x2719 0 1 1 1 .0784
x2797 0 1 1 1 .9488
x3108 1 1 1 1 .0322
x4293 1 1 1 1 .9870
x4495 1 1 1 1 .0024
x4535 1 1 1 1 .0438
x4685 0 1 1 1 .0781
x4693 0 1 1 1 .9367
x4880 1 1 1 1 .0312
x4985 0 0 0 1 .7156
x5023 0 1 1 1 .0870
x5238 1 1 1 1 .0355
x5284 1 1 1 1 .0355
x5442 1 1 1 1 .0414
x5612 1 1 1 1 .0178
x5624 1 1 1 1 .0128
x5757 1 1 1 1 .0004
x5912 1 1 1 1 .9997
x6197 1 1 1 1 .0372
x6235 1 1 1 1 .0397
x6335 1 1 1 1 .9940
x6741 0 0 0 0 .5881
x7019 1 1 1 1 .9765
x7065 0 1 1 1 .9266

x724 0 0 0 1 .2258
x860 0 0 1 1 .1076
x879 1 1 1 1 .0257
x881 1 1 1 1 .0368
x935 1 1 1 1 .9740
x723 1 1 1 1 .0059

x2670 1 1 1 1 .0069

Sum 33 42 44 46

are identi� ed as being different as the prior becomes less
informative. For the 95% criterion, 33 genes overlapped; for
90%, 42 genes overlapped; for 80%, 44 genes overlapped; and
for 70%, 46 genes overlapped. Thus the moderate priors give
more overlapped genes with the PERMAX criterion. To fur-
ther assess the sensitivity to the choice of prior, we considered
a small perturbation of (Ç01 d01k01h0) for the full model. The
results are robust to minor perturbations of (Ç01d01k01 h0).
For example, with 4Ç01 d01k01h05 D 4091 091 091 095, the num-
ber of genes that overlap with the PERMAX criterion are
32, 42, 44, and 46 under the 95%, 90%, 80%, and 70%
criteria. Moreover, the ratio of the L measures for the
model with 4Ç01d01k01h05 D 4091 091 091 095 to the model with
4Ç01d01k01 h05 D 411111115 is 1.011 using � D 1=2. So the
L measures are quite close under these two choices of hyper-
parameters. Also, with these hyperparameters, the posterior
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mean and standard deviation of Œ10 (normal tissues) are 6.083
and .013. For the tumor tissues, the posterior mean and stan-
dard deviation of Œ20 are 6.017 and .010. Similar results were
observed with 4Ç01 d01k01h05 D 41011 101110111015. Speci� -
cally, the number of genes overlap with the PERMAX cri-
terion are 33, 42, 44, and 46 under the 95%, 90%, 80%,
and 70% criteria. Moreover, the ratios of the L measures
for the model with 4Ç01d01k01 h05 D 4101110111011 1015 to the
model with 4Ç01d01k01h05 D 411 11 1115 is .991, so the L mea-
sures are quite close under these two choices of hyperparam-
eters. Also, under these hyperparameters, the posterior mean
and standard deviation of Œ10 are 6.083 and .013. For the
tumor tissues, the posterior mean and standard deviation of
Œ20 are 6.017 and .010. We conclude that minor perturbations
in 4Ç01d01 k01 h0) lead to quite robust parameter estimates, L
measure values, and gene selection criteria.

Table 6 gives L measure values with � D 1=2 based on
several models using the hyperparameters ‡10 D ‡20 D 10,
d10 D d20 D 10, and k10 D k20 D h10 D h20 D 50. With these
hyperparameters, the model based on the 70% criterion is the
best-� tting model according to the L measure, and the mod-
els based on the 80% and 90% criteria gives similar � ts. We
also note that the PERMAX criterion has the largest L mea-
sure. Table 6 demonstrates how our gene selection algorithm
of Section 5 works. We see that the larger the ƒ0, the fewer
the number of genes declared to be different. The smaller the
ƒ0, the greater the number of genes that are declared differ-
ent. Thus a criterion using ƒ0 D 095 or ƒ0 D 090, for example,
would declare fewer genes to be different than would a crite-
rion using a smaller value of ƒ0. Table 6 indicates that there
is a trade-off between the number of genes declared to be dif-
ferent and the goodness of � t (and complexity) of the model
as indicated by the L measure. Thus a model with ƒ0 D 090
declares fewer genes to be different, but at the same time is a
more parsimonious model with fewer parameters than a model
with ƒ0 D 070. Thus the L measure for the model with ƒ0 D 070
is smaller than that of the model with ƒ0 D 090. For this rea-
son, our gene selection algorithm, through ƒ0 and the L mea-
sure, tries to strike a balance between the number of genes
declared to be different and the goodness of � t of the model.
The results from Tables 2–6 suggest that many genes are dif-
ferentially expressed between tumor tissues and normal tis-
sues. Although PERMAX selected fewer genes, it is designed
to select a small subset of the most signi� cant genes for fur-
ther study. In any case, there was a great deal of overlap from
the selected genes from our gene selection algorithm and the
PERMAX criterion. We include the comparison of PERMAX
and our Bayesian model because we feel that it is important
to compare our method with a frequentist technique, and there

Table 6. L Measure for Various Values of ƒ0

Number of genes
Criterion L measure declared to be different

Full model 98,305 3,214
70% 97,932 2,055
80% 98,905 1,505
90% 102,017 1,004

PERMAX 110,809 47

is no other well-known frequentist competitor, and we believe
PERMAX to be a reasonable frequentist criterion based on
t statistics, like many other criteria currently being used for
DNA microarray data. It is possible that our Bayesian model
may produce more similar results to PERMAX if we change
our gene selection algorithm of Section 5 in step 1 to be of
the form ƒ D P4�g > a—D5, where a D 213, and so on. Here
we have chosen a D 1. This issue needs further investigation,
however, and is currently being examined.

Table 7 shows the L measure for the full model with
� D 1=2 based on several choices of prior parameters. For
Table 6, we take both of the components for each of Ç01d01k0,
and h0 to be the same. For example, 4Ç01 d01k01h05 D
4201201501505 implies that ‡10 D ‡20 D 201d10 D d20 D 20,
k10 D k20 D 50, and h10 D h20 D 50. We see that as the prior
becomes less informative [i.e., (Ç01d01 k01 h0) are increased],
an improvement in the L measure results. That is, as less
strength is borrowed across genes, the overall � t of the model
is improved. However, we also note that there is a threshold
region for which the L measure actually worsens if the prior
becomes too noninformative. That is, there is a region of infor-
mativeness in the priors for which the L measure is improved,
and there is a threshold for the choices in the prior parameters,
so that making the prior too informative or too noninformative
results in a poorer � t and hence yields larger L measure val-
ues. Overall, from Table 7 we see that the L measure is quite
robust with respect to several choices of prior parameters. For
example (Ç01d01k01h05 D 4501501 501 505, (20, 20, 50, 50),
(100, 100, 50, 50) yield nearly identical L measure values.

To assess the assumption of the lognormal distribution for
modeling the gene expression levels, we constructed normal
probability plots for each individual (Fig. 1). We see from
Figure 1 that the normal probability plots are quite linear for
each individual, implying that the assumption of the lognormal
distribution is indeed tenable. To further assess the overall � t
of the full model, we checked to see if the posterior estimates
of pjig and �g are comparable in some sense to the observed
data. Figure 2 shows boxplots of ãp1 D Op1g ƒ E4p1g—D5 and
ãp2 D Op2g ƒ E4p2g—D5 under informative (Ç01d01k01h05 D
40011 0011 0011 0015, moderate (Ç01d01k01 h05 D 411 11 1115, and
vague (Ç01 d01k01h05 D 410011001 501505 priors. Thus ãp1

and ãp2 are the differences in the sample proportions and the
posterior means of pjg , for j D 11 2. From these boxplots, we
see that for vague priors, ãp1 and ãp2 are highly concentrated
near 0, whereas for informative and moderate priors there is
more dispersion, but the medians of ãp1 and ãp2 are near 0.

Table 7. L Measure for the Full Model Using Different Values of the
Hyperparameters for Œj 0 and ej g

(‡01d01k01h0) L measure

(1,1,1,1) 116,246
(10, 10, 10, 10) 101,326
(20, 20, 20, 20) 99,699
(100, 100, 20, 20) 99,690
(50, 50, 50, 50) 98,307
(20, 20, 50, 50) 98,307
(100, 100, 50, 50) 98,307
(10, 10, 50, 50) 98,305
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Figure 1. Normal Probability Plots of log yj i D ( log( yj i g - 20) : yi jg > 20) 0 for j D 1, 2 and i D 1, 2, : : : , n j .

Figure 2 thus demonstrates that the observed data are quite
consistent with the posterior estimates of pjg obtained from
the � tted full model, thus validating our choice of the func-
tional form of the model. Figure 3 shows a boxplot of

ã� D log
³

41=n25
Pn2

iD1 y2ig

41=n15
Pn1

iD1 y1ig

´
ƒ E4log4�g5—D5

for g D 1121 : : : 1 G, under the informative, moderate, and
vague priors used for Figure 2. Again in this boxplot we
observe a great deal of consistency between the posterior esti-
mates and the observed data. For each case in Figure 3, we
see that the boxplot is concentrated near 0, with the dispersion
increasing as the prior becomes more informative. Figure 3
again demonstrates that the observed data are quite consistent
with the posterior estimates of �g obtained from � tting the full
model, thus validating our choice of a model.

We have also examined the impact of certain observations
on our model and model robustness in general. We note that
if mj0 has a moderate to vague prior, then the model is quite
robust, and the impact of the omission of a single observa-
tion is in fact minimal. However, if mj0 has a sharp prior,
then the model becomes less robust, and certain observations
can greatly in� uence the model. Thus if we borrow too much
strength (sharp prior for mj0), then the model becomes less

robust, and certain observations can be quite in� uential. How-
ever, if we borrow low to moderate strength, then the model is
quite robust. This seems to be a nice property of our model. A
similar but opposite phenomenon occurs with ejg . If the prior
on ejg is too vague, then the model becomes less robust. How-
ever, a moderate to sharp prior for ejg improves the robustness
of the model, and observations are less in� uential with mod-
erate to sharp priors for ejg . Thus for ejg , if we do not borrow
enough strength, then the model becomes less robust.

8. DISCUSSION

We have developed a new parametric Bayesian model for
analyzing DNA microarray data. This model along with the L
measure allow us to formally assess differences in genes for
the two tissue types and make inferences about the magnitude
of the differences. We have proposed classes of hierarchical
priors that allow us to build a correlation structure between
the genes. In addition, we have proposed a novel gene selec-
tion algorithm for producing various models that then can be
formally assessed with the L measure. Thus the gene selec-
tion algorithm coupled with the L measure provide us with
new tools for analyzing gene expression data. Our proposed
methodology provides an attractive approach to these types
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Figure 2. Boxplots for ãp1 and ãp2 Using Informative
( ‡0, d0 ,k0, h0) D ( .01, .01, .01, .01) Priors, Moderate ( ‡0, d0 ,k0 ,h0) D
( 1, 1,1, 1) Priors, and Vague (‡0 ,d0, k0 ,h0) D (100,100, 50, 50) Priors.

of problems. Software to � t our proposed model is available
from the authors upon request.

Our approach is also quite different from the clustering
algorithms proposed in the literature, because it provides us
with much more � exibility for making inferences about the
gene differences and characterizing the gene expression pat-
terns in the two tissue types. Here we note that our model
development and prior distributions can be easily extended to
handle three or more tissue types. We have focused on two
tissue types mainly for clarity of exposition and also because
this is perhaps one of the most common settings in cancer.

Here we mention that analyses of gene expression data
are sometimes carried out by completely ignoring the abso-
lute call. Doing this here results in a completely different
dataset that is not at all comparable to a dataset that incor-
porates the absolute call into the analysis. We will consider
such analyses in future work. In addition, more research is
needed to develop more general classes of priors that bor-
row strength within and across tissue types. Such classes of
priors are currently being investigated. Finally, further inves-
tigation of the gene selection criterion will be carried out;
in particular, we will study other criteria related to P4� >

1—G) that may be suitable for gene selection. The promis-
ing results given here will lead to fruitful research in this
direction.
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Figure 3. Boxplots for ã� Using Informative (‡0 ,d0, k0 ,h0) D
( .01, .01, .01, .01) Priors, Moderate (‡0 ,d0 ,k0, h0) D ( 1,1,1, 1) Priors,
and Vague ( ‡0, d0 ,k0, h0) D ( 100,100,50,50) Priors.

APPENDIX: COMPUTATIONAL ALGORITHMS
We use the Gibbs sampling algorithm to sample from the joint

posterior distribution of the parameters Œ1‘ 21b0 D 4b101 b205, Ì0 D
4Œ101Œ205, e D 4e111 e211 : : : 1 e1G1 e2G5, and u0 D 4u101 u205. Although
the joint posterior distribution of the model parameters does not have
a closed form, the conditional posteriors have a closed form or the
conditional posterior densities are log-concave, and thus implemen-
tation of the Gibbs sampler is straightforward. Let D denote the data,
and let rest denote the remaining parameters. Then the following
apply:

1. If „jg D
Pnj

iD1 „j ig D nj , then

6Œjg — D1 rest7 N4Œj01 ’0‘
2
jg= Nnj51

where Nnj is de� ned by (7), and if „jg < nj ,

6Œjg — D1 rest7 N4Œ ü
jg 1‘ ü 2

jg 51

where ‘ ü 2
jg D 8 Nnj=4’0‘

2
jg5 C 4nj ƒ „jg5=‘

2
jg9

ƒ1 and

Œü
jg D‘ 2ü

jg

njX

iD1

41 ƒ„j ig5 log4yj ig5=‘ 2
jg CŒj0 Nnj=4’0‘

2
jg 5

for j D 112 and g D 1121 : : : 1 G.
2. 6‘ 2

jg — D1 rest7 IG4aü
jg1 b ü

jg5, where

a ü
jg D

1

2
4nj ƒ„jg C15C aj0

and

b ü
jg D

1

2

njX

iD1

41 ƒ„j ig54log4yj ig5ƒ Œjg5
2

C Nnj4Œjg ƒŒj05
2=’0 C bj0

for j D 112 and g D 1121 : : : 1 G.



Ibrahim, Chen, and Gray: Bayesian Models for DNA Microarray Data 99

3. 6Œj0 — D1 rest7 N 4Œü
j01‘

ü 2
j0 5, where

‘ ü 2
j0 D 1=v2

j0 C
GX

gD1

Nnj=4’0‘
2
jg5

ƒ1

and

Œ ü
j0 D‘ ü 2

j0

GX

gD1

NnjŒjg=4’0‘
2
jg5 Cmj0=v2

j0

for j D 112.
4. 6bj0 — D1 rest7 ƒ4q ü

j01 t ü
j05, where q ü

j0 D Gaj0 C qj0 and t ü
j0 DPG

gD1 1=‘ 2
jg C tj0 for j D 112.

5. For j D 11 2 and g D 11 21 : : : 1G, the logarithm of the condi-
tional posterior density is of the form

log p4ejg — D1 rest5 / „jgejg ƒnj log41 C exp4ejg 55

ƒ 4ejg ƒ uj052=42kj0w2
j051

and it can be shown that p4ejg — D, rest) is log-concave.
6. 6uj0 — D1 rest7 N 4uü

j01w ü 2
j0 5, where

w ü 2
j0 D 81=4hj0w2

j05 CG=4kj0w2
j059ƒ1

and

uü
j0 D w ü 2

j0

GX

gD1

ejg=4kj0w
2
j05 C Ouj0=4hj0w2

j05

for j D 112.

Thus, for 1–4 and 6, the generation is straightforward, whereas
for 5, we can use an adaptive rejection algorithm of Gilks and Wild
(1992), because the corresponding conditional posterior densities are
log-concave.

[Received May 2000. Revised August 2001.]
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