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OPTIMAL PREDICTIVE MODEL SELECTION1

By Maria Maddalena Barbieri and James O. Berger

Università Roma Tre and Duke University

Often the goal of model selection is to choose a model for future
prediction, and it is natural to measure the accuracy of a future
prediction by squared error loss. Under the Bayesian approach, it is
commonly perceived that the optimal predictive model is the model
with highest posterior probability, but this is not necessarily the case.
In this paper we show that, for selection among normal linear models,
the optimal predictive model is often the median probability model,
which is defined as the model consisting of those variables which have
overall posterior probability greater than or equal to 1/2 of being in
a model. The median probability model often differs from the highest
probability model.

1. Introduction. Consider the usual normal linear model

y = Xβ + ε,(1)

where y is the n × 1 vector of observed values of the response variable,
X is the n × k (k < n) full rank design matrix of covariates, and β is a
k× 1 vector of unknown coefficients. We assume that the coordinates of the
random error vector ε are independent, each with a normal distribution with
mean 0 and common variance σ2 that can be known or unknown. The least
squares estimator for this model is thus β̂ = (X′X)−1X′y.

Equation (1) will be called the full model, and we consider selection from
among submodels of the form

Ml :y = Xlβl + ε,(2)

where l = (l1, l2, . . . , lk) is the model index, li being either 1 or 0 as covariate
xi is in or out of the model (or, equivalently, if βi is set equal to zero); Xl
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contains the columns of X corresponding to the nonzero coordinates of l;
and βl is the corresponding vector of regression coefficients.

Upon selecting a model, it will be used to predict a future observation

y∗ = x∗β + ε,(3)

where x∗ = (x∗
1, . . . , x

∗
k) is the vector of covariates at which the prediction is

to be performed. The loss in predicting y∗ by ŷ ∗ will be assumed to be the
squared error loss

L(ŷ ∗, y∗) = (ŷ ∗ − y∗)2.(4)

With the Bayesian approach to model selection it is commonly perceived
that the best model will be that with the highest posterior probability. This
is true under very general conditions if only two models are being enter-
tained [see Berger (1997)] and is often true in the variable selection problem
for linear models having orthogonal design matrices [cf. Clyde (1999) and
Clyde and George (1999, 2000)], but is not generally true. Indeed, even when
only three models are being entertained essentially nothing can be said about
which model is best if one knows only the posterior probabilities of the mod-
els. This is demonstrated in Section 5, based on a geometric representation
of the problem.

For prediction of a single y∗ at a specific x∗, one can, of course, sim-
ply compute the posterior expected predictive loss corresponding to each
model and choose the model that minimizes this expected loss. In such a
scenario, however, choosing a specific model makes little sense; one should,
rather, base the prediction on Bayesian model averaging [cf. Clyde (1999) and
Hoeting, Madigan, Raftery and Voliksky (1999)]. The basic use of model se-

lection for prediction is when, because of outside constraints, a single model
must be selected for repeated use in future predictions. (Note that we are
assuming that these constraints preclude use of the Bayesian model aver-
aging answer.) It is natural to assume that these future predictions will be
made for covariates x∗ that arise according to some distribution. We further
assume that the k×k expectation matrix corresponding to this distribution,

Q = E[(x∗)′(x∗)],(5)

exists and is positive definite. A frequent choice is Q = X′X, which is equiv-
alent to assuming that the covariates that will occur in the future are like
those that occurred in the data. (Strictly, this would yield Q = 1

nX′X, but
constants that are common across models can be ignored.)

In this scenario, one could still simply compute the expected predictive
loss corresponding to each model and minimize, but the expectation would
now also be over x∗. This can add quite a computational burden, especially
when there are many models to consider. Bayesian MCMC schemes have
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been developed that can effectively determine the posterior model probabil-
ities P (Ml|y), but adding an expectation over x∗ and a minimization over l

can be prohibitive [although see Müller (1999)]. We thus sought to determine
if there are situations in which it is possible to give the optimal predictive
model solely in terms of the posterior model probabilities.

Rather general characterizations of the optimal model turn out to be
frequently available but, quite surprisingly, the characterizations are not in
terms of the highest posterior probability model, but rather in terms of what
we call the median probability model.

Definition 1. The posterior inclusion probability for variable i is

pi ≡
∑

l : li=1

P (Ml|y),(6)

that is, the overall posterior probability that variable i is in the model.
If it exists, the median probability model M∗

l
is defined to be the model

consisting of those variables whose posterior inclusion probability is at least
1/2. Formally, l∗ is defined coordinatewise by

l∗i =

{
1, if pi ≥

1
2 ,

0, otherwise.
(7)

It may happen that the set of covariates defined by (7) does not correspond
to a model under consideration, in which case the median probability model
will not exist. There are, however, two important cases in which the median
probability model is assured to exist. The first is in the problem of variable
selection when any variable can be included or excluded from the model (so
that all vectors l are possible).

The second case of particular interest is when the class of models under
consideration has a graphical model structure.

Definition 2. Suppose that for each variable index i there is a corre-
sponding index set I(i) of other variables. A subclass of linear models has
graphical model structure if it consists of all models satisfying the condition
“for each i, if variable xi is in the model, then variables xj with j ∈ I(i) are
in the model.”

It is straightforward to show that if a subclass of linear models has graph-
ical model structure, then the median probability model will satisfy the con-
dition in the definition and, hence, will itself be a member of the subclass.

One common example of a class of linear models having graphical model
structure is the class of all models that can be constructed from certain main
effects and their interactions up to a certain order, subject to the condition
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that if a high order interaction of variables is in a model then all lower order
interactions (and main effects) of the variables must be in the model.

A second example of a subclass having graphical model structure is a
sequence of nested models,

Ml(j), j = 0, . . . , k, where l(j) = (1, . . . ,1,0, . . . ,0),(8)

with j ones and k − j zeroes. Examples of this scenario include polynomial
regression, in which j refers to the polynomial order used, and autoregressive
time series, in which j refers to the allowed lag. Note that for nested models
the median probability model has a simpler representation as Ml(j∗), where
j∗ is such that

j∗−1∑

i=0

P (Ml(i)|y) < 1
2 and

j∗∑

i=0

P (Ml(i)|y) ≥ 1
2 .(9)

In other words, one just lists the sequence of posterior model probabilities
and sums them up until the sum exceeds 1/2. The model at which the
exceedance occurs is the median probability model.

The above special cases also define the scenarios that will be investigated
in this paper. The goal will be to provide conditions under which the median
probability model is the optimal predictive model. The conditions are pri-
marily restrictions on the form of the predictors for y∗. The restrictions are
fairly severe, so that the results can best be thought of as applying primarily
to default Bayes or empirical Bayes types of procedures.

Initially we had sought to find conditions under which the highest poste-
rior probability model was the optimal predictive model. It came as quite a
surprise to find that any optimality theorems we could obtain were, instead,
for the median probability model. Frequently, however, the median proba-
bility model will coincide with the highest posterior probability model. One
obvious situation in which this is the case is when there is a model with
posterior probability greater than 1/2. Indeed, when the highest posterior
probability model has substantially larger probability than the other mod-
els, it will typically also be the median probability model. Another situation
in which the two coincide is when

P (Ml|y) =
k∏

i=1

pli
i (1− pi)

(1−li),(10)

where the pi are the posterior inclusion probabilities in (6). This will be seen
to occur in the problem of variable selection under an orthogonal design
matrix, certain prior structures, and known variance σ2, as in George and
McCulloch (1993). [Clyde and Parmigiani (1996) and Clyde, DeSimone and
Parmigiani (1996) show that (10) can often be approximately satisfied when
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σ2 is unknown, and it is likely that the median probability model will equal
the maximum probability model in such cases.]

That the median probability model is optimal (under restrictions) for
both the variable selection problem and the nested case, which are very
different in nature, suggests that it might quite generally be the optimal
predictive model and should replace the highest posterior probability model
as the “preferred” predictive model in practice. (We will see evidence of
this later.) Note also that determination of the median probability model
is very straightforward within ordinary MCMC model search schemes. In
these schemes one develops a Markov chain to move between the models,
with the posterior probability of a model being estimated by the fraction of
the time that the model is visited by the chain. To determine the median
probability model one need only record, for each variable, the fraction of
the time that the variable is present in the visited models; at the end of
the MCMC one chooses those variables for which the fraction exceeds 1/2.
Indeed, determining the median probability model in this fashion will often
be computationally simpler than finding the highest posterior probability
model. In the variable selection problem, for instance, accurately determin-
ing when k fractions are above or below 1/2 is often much easier than trying
to accurately estimate the fractional visiting times of 2k models. Note also
that in the orthogonal design situation mentioned above the posterior inclu-
sion probabilities are actually available in closed form.

The difference between predictive optimality and highest posterior model
probability also explains several misunderstandings that have arisen out
of the literature. For instance, Shibata (1983) shows that the BIC model
selection criterion is asymptotically inferior to AIC for prediction in sce-
narios such as polynomial regression, when the true regression function is
not a polynomial. This has been routinely misinterpreted as saying that the
Bayesian approach to model selection is fine if the true model is among those
being considered, but is inferior if the true model is outside the set of candi-
date models. Note, however, that BIC is essentially just an approximation to
the log posterior probability of a model, so that model selection according
to BIC is (at best) just selecting the highest posterior probability model,
which is often not the optimal Bayesian answer. Indeed, as discussed above,
the optimal Bayesian predictive model in the situation of Shibata (1983) is
actually the median probability model. [There are also concerns with the
applicability of BIC as an approximation to log posterior probability here;
see Berger, Ghosh and Mukhopadhyay (2003) for further discussion.]

In Section 2, we set the basic notation for the prediction problem and
give the formula for predictive expected loss. Section 3 gives the basic the-
ory concerning optimality of the median probability model, and discusses
application in nested model and ANOVA scenarios. Section 4 generalizes
the basic theory to deal with problems in which all models have common
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nuisance parameters and the design matrix is nonorthogonal. A geometric
description of the problem is provided in Section 5; this provides consider-
able insight into the structure of the problem. Finally, Section 6 gives some
concluding comments, primarily relating to the limitations of the theory.

2. Preliminaries.

2.1. Posterior inputs to the prediction problem. Information from the
data and prior is summarized by providing, for all l,

pl ≡ P (Ml|y) the posterior probability of model Ml,
πl(βl, σ|y) the posterior distribution

of the unknown parameters in Ml.
(11)

These inputs will often arise from a pure Bayesian analysis based on initial
specification of prior probabilities P (Ml) for the models, together with prior
distributions πl(βl, σ) for the corresponding unknown parameters. Then,
given the data y, the posterior probability of Ml is given by

pl =
P (Ml)ml(y)

∑
l∗ P (Ml∗)ml∗(y)

,(12)

where

ml(y) =

∫
πl(βl, σ)fl(y|βl, σ)dβl dσ(13)

is the marginal density of y under Ml, with fl(y|βl, σ) denoting the normal
density specified by Ml. Likewise, the posterior distributions πl(βl, σ|y) are
given by straightforward application of Bayes theorem within each model.

We allow, however, for nontraditional determination of the pl and πl(βl, σ|y),
as can occur with use of default strategies. In particular, it is not uncommon
to use separate methodologies to arrive at the pl and the πl(βl, σ|y), the pl

being determined through use of a default model selection tool such as BIC,
Intrinsic Bayes Factors [cf. Berger and Pericchi (1996a)] or Fractional Bayes
Factors [cf. O’Hagan (1995)]; and the πl(βl, σ|y) being determined from or-
dinary noninformative priors, typically the reference priors, which are either
constant in the known variance case or given by

πl(βl, σ) =
1

σ
(14)

in the unknown variance case. Of course, this may be incoherent from a
Bayesian perspective, since it essentially means using different priors to de-
termine the pl and the πl(βl, σ|y).

The result of following such a mixed strategy also allows non-Bayesians
to connect with this methodology. In particular, the predictor that results
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from use of the reference prior in model Ml is easily seen to be the usual
least squares predictor, based on the least squares estimate

β̂l = (X′
lXl)

−1X′
ly.

Thus, for instance, the common use of BIC together with least squares esti-
mates can be converted into our setting by defining pl ∝ eBIC.

Finally, the empirical Bayes approach is often used to obtain estimated
versions of the quantities in (11). Again, while not strictly coherent from a
Bayesian perspective, one can utilize such inputs in the following method-
ology.

2.2. Predictors and predictive expected loss. It is easy to see that the
optimal predictor of y∗ in (3), under squared error loss and when the model
Ml, of dimension kl, is true, is given by

ŷ ∗
l

= x∗Hlβ̃l,

where β̃l is the posterior mean of βl with respect to πl(βl, σ|y) and Hl

is the k × kl matrix whose (i, j) entry is 1 if li = 1 and j =
∑i

r=1 lr and
is 0 otherwise. Note that Hl is simply the matrix such that xHl is the
subvector of x corresponding to the nonzero coordinates of l, that is, the
covariate vector corresponding to model Ml. The posterior mean of β in
the full model is thus formally written as β̃(1,...,1), but we will drop the

subscript and simply denote it by β̃ (as we have done with β̂, the least
squares estimate for the full model).

The optimal Bayesian predictor of y∗ is well known to be the model
averaging predictor, given by

ȳ∗ = x∗β̄ ≡ x∗
∑

l

plHlβ̃l.(15)

Note that “optimal” is defined in terms of expected loss over the posterior
in (11); if the posterior arises from an incoherent prior, as is allowed above,
there is no guarantee that the resulting procedure possesses any other opti-
mality properties—even “dutch books” against the procedure or frequentist
inadmissibility could result.

The best single model for prediction can be found by the following lemma.

Lemma 1. The optimal model for prediction of y∗ in (3) under the

squared error loss (4), when the future covariates satisfy (5) and the pos-

terior distribution is as in (11), is the model that minimizes

R(Ml)≡ (Hlβ̃l − β̄)′Q(Hlβ̃l − β̄),(16)

where β̄ is defined in (15).
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Proof. For fixed x∗ a standard result [see, e.g., Bernardo and Smith
(1994), page 398] is that

E[(ŷ ∗
l
− y∗)2] = C + (ŷ ∗

l
− ȳ∗)2,

where C does not depend on l and the expectation is with respect to the
predictive distribution of y∗ given y. Since

(ŷ ∗
l
− ȳ∗)2 = (Hlβ̃l − β̄)′x∗ ′x∗(Hlβ̃l − β̄),

taking the expectation over x∗ and using (5) yields the result. �

3. Basic results and examples. Section 3.1 presents the basic theorem
that is used to establish optimality of the median probability model. Section
3.2 considers the situation in which all submodels of the linear model are
allowed. Section 3.3 deals with nested models and Section 3.4 considers the
ANOVA situation.

3.1. Basic theory. Assume X′X is diagonal. Then it will frequently be
the case that the posterior means β̃l satisfy

β̃l = H′
l
β̃,(17)

that is, that the posterior mean of βl is found by simply taking the relevant

coordinates of β̃, the posterior mean in the full model. Here are two common
scenarios in which (17) is true.

Case 1. Noninformative priors for model parameters: Use of the ref-
erence priors in (14) (or constant priors when σ2 is known) results in the

posterior means being the least squares estimates β̂l. Because X′X is diag-
onal, it is easy to see that (17) is then satisfied.

Case 2. Independent conjugate normal priors: In the full model suppose
that π(β|σ) is Nk(µ, σ2Λ), the k-variate normal distribution with mean µ

and diagonal covariance matrix σ2Λ, with Λ given. Then it is natural to
choose the priors on βl in the submodels to be Nkl

(H′
l
µ, σ2H′

l
ΛHl), where

kl is the dimension of βl. It is then easy to verify that (17) holds for any
prior on σ2 or for σ2 being given (e.g., known, or estimated). Note that we
do not necessarily recommend using this conjugate form of the prior with
unknown σ2; see Berger and Pericchi (2001) for discussion.

While Λ could be chosen subjectively, it is more common to utilize default
choices, such as the g-type normal priors [cf. Zellner (1986)] Λ = n(X′X)−1

or Λ = c(X′X)−1, with c chosen by an empirical Bayes analysis (e.g., chosen
to maximize the marginal density averaged over models). Papers which fall
under these settings include Chipman, George and McCulloch (2001), Clyde
and Parmigiani (1996), Clyde, DeSimone and Parmigiani (1996), Clyde,
Parmigiani and Vidakovich (1998) and George and Foster (2000).
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Note that one can use noninformative priors for certain coordinates and
independent conjugate normal priors for other coordinates. This is particu-
larly useful when all models under consideration have “common” unknown
parameters; it is then typical to utilize noninformative priors for the common
parameters, while using independent conjugate normal priors for the other
parameters [see Berger, Pericchi and Varshavsky (1998) for justification of
this practice].

Lemma 2. If Q is diagonal with diagonal elements qi > 0 and (17) holds,

then

R(Ml) =
k∑

i=1

β̃ 2
i qi(li − pi)

2,(18)

where pi is as in (6).

Proof. From (17) it follows that

β̄ ≡
∑

l

plHlβ̃l =
∑

l

plHlH
′
lβ̃ = D(p)β̃,

where D(p) is the diagonal matrix with diagonal elements pi. Likewise, (16)
becomes

R(Ml) = (HlH
′
l β̃ −D(p)β̃)′Q(HlH

′
lβ̃ −D(p)β̃)

= β̃
′
(D(l)−D(p))Q(D(l)−D(p))β̃,

and the conclusion is immediate. �

Theorem 1. If Q is diagonal with diagonal elements qi > 0, condition

(17) holds and the models under consideration have graphical model struc-

ture, then the median probability model is the best predictive model.

Proof. To minimize (18) among all possible models, it is clear that one
should choose li = 1 if pi ≥ 1/2 and li = 0 otherwise, which is as in (7). As
mentioned earlier, the graphical model structure ensures that the model so
defined is actually in the space of models under consideration, completing
the proof. �

The above theorem did not formally use the condition that X′X be di-
agonal. However, if it is not diagonal, then (17) will not typically hold, nor
will Q usually be diagonal.
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3.2. All submodels scenario. Under the same conditions as in Section
3.1 the following corollary to Theorem 1 gives the median probability model
when all submodels are considered.

Corollary 1. If Q is diagonal with diagonal elements qi > 0, condi-

tion (17) holds and any submodel of the full model is allowed, then the best

predictive model is the median probability model given by (7). In addition, if

σ2 is given in Case 2 of Section 3.1 and the prior probabilities of the models

satisfy

P (Ml) =
k∏

i=1

(p0
i )

li(1− p0
i )

(1−li),(19)

where p0
i is the prior probability that variable xi is in the model, then (10) is

satisfied and the median probability model is the model with highest posterior

probability.

Proof. The first part of the corollary is immediate, since {all submod-
els} clearly has graphical model structure.

For Case 2 and given σ2, computation as in Clyde and Parmigiani (1996)
and Clyde, DeSimone and Parmigiani (1996) shows that (10) is satisfied
with

p−1
i = 1 +

(
1

p0
i

− 1

)
(1 + λidi)

1/2 exp

{
−

v2
i λi + 2viµi − µ2

i di

2σ2(1 + λidi)

}
,

where the {di} and {λi} are the diagonal elements of X′X and Λ, respec-
tively, and v = (v1, . . . , vk)

′ = X′y. �

While many proposed choices of prior probabilities satisfy (19), others do
not. For instance, Jeffreys (1961) suggested that it might often be reason-
able to choose the prior probability of given model orders to be decreasing,
for example, P (order j) ∝ 1/j, with this probability then being divided up
equally among all models of size j. Such an assignment of prior probabilities
would not typically satisfy (19), and the best predictive model (i.e., the me-
dian probability model) would then not necessarily be the highest posterior
probability model, even in Case 2.

Finally, it should be noted that Corollary 1 also applies to the case where
all models under consideration have “common parameters.” One can simply
define p0

i = 1 for such parameters.

3.3. Nested models. We initially consider the orthogonal case, as in Sec-
tion 3.1. This is generalized to the nonorthogonal case at the end of the
section.
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3.3.1. Orthogonal case.

Corollary 2. If Q is diagonal with diagonal elements qi > 0, condi-

tion (17) holds and the models under consideration are nested, then the best

predictive model is the median probability model given by (7) or (9).

Proof. This is immediate from Theorem 3.1, because nested models
have graphical model structure. �

Example 1. Nonparametric regression [also studied in Mukhopadhyay
(2000) for a different purpose]: The data consists of the paired observations
(xi, yi), i = 1, . . . , n, where for known σ2,

yi = f(xi) + εi, εi ∼N(0, σ2).(20)

Represent f(·), an unknown function defined on the interval (−1,1), using
an orthonormal series expansion, as

f(x) =
∞∑

i=1

βiφi(x),

where {φ1(x), φ2(x), . . .} are the Chebyshev polynomials. Of course, only a
finite approximation to this series can be utilized, so define the model Ml(j)

[see (8) for notation] to be

Ml(j) :y =
j∑

i=1

βiφi(x) + ε, ε∼ N(0, σ2).

The problem is thus to choose among the nested sequence of linear models
Ml(j), j = 1, . . . . As is common in practice, we will choose an upper bound
k on the size of the model, so that Ml(k) is the full model in our earlier
terminology.

The function f(x) =− log(1− x) was considered in Shibata (1983) as an
example for which BIC yielded considerably suboptimal models for predic-
tion. It is hence of interest to see how the median probability model fares in
this situation.

We assume the yi are observed at the covariates xi = Cosine([n− i+ 1
2 ]πn),

i = 1, . . . , n, and let Xj = (φm(xi)) be the resulting n× j design matrix with
indicated (i,m) entries, i = 1, . . . , n and m = 1, . . . , j. From the definition
of Chebyshev polynomials it follows that X′

jXj = n
2 Ij , where Ij is the j × j

identity matrix. It follows that the least squares estimate of βj is β̂j = 2
nX′

jy.
Assume that the models have equal prior probability 1/k, and that, within

any model Ml(j) the βi have independent N(0, ci−a) prior distributions for
some constants c and a (which are the same across models). The choice of
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a determines how quickly the prior variances of the βi decrease (any L2

function must have a > 1), and we shall consider three choices: a = 1, a = 2
(which happens to be the rate corresponding to the test function) and a = 3.
For simplicity of calculation we estimate c by an empirical Bayes analysis
using the full model Ml(k), keeping the estimate ĉ fixed across models. Then
if Q is diagonal (as would thus be the case for the natural choice Q = X′

kXk),
Corollary 2 implies that the median probability model will be the optimal
Bayesian predictive model.

For nonparametric regression it is common to utilize the loss function

L(f, f̂) =

∫ 1

−1
(f̂(x)− f(x))2 dx.(21)

In the predictive context use of this loss is equivalent to prediction un-
der squared error loss when the future covariates x are thought to be uni-
formly distributed on (−1,1). A standard computation shows that L(f, f̂) =∑∞

i=1(β̃i − βi)
2, where β̃i stands for the estimator that is used for the true

coefficient βi. Since we have restricted the models under consideration to
be of maximum order k, it follows that β̃i = 0 for i > k in our problem and
the loss arising from these coordinates can be ignored in model comparison.
The resulting loss is also easily seen to be equivalent to the predictive loss
we have previously used, with Q = Ik.

The optimality of the median probability model is with respect to the
internal Bayesian computation, which assumes that the true function is ac-
tually one of the models Ml(j), j = 1, . . . , k. For the example considered
by Shibata, however, the true model lies outside the collection of Bayesian
models (since it can be shown that none of the βi in the expansion for this
function is zero). It is thus of interest to see how the median probability
model performs in terms of the loss (21) for the (here known) function.

Under Ml(j) the estimates of the βi are the (empirical) Bayes estimates

β̃i = (1 + 2σ2ia/nĉ)−1β̂i if i≤ k, and β̃i = 0 otherwise. Hence the predictive

loss under model Ml(j) is
∑j

i=1(β̃i−βi)
2 +
∑∞

i=j+1 β2
i , although we will ignore

the terms in the sum for i > k since they are common across all considered
models.

In Table 1 we compare the expected predictive loss (the frequentist ex-
pectation with respect to the data under the true function) of the maximum
probability model with that of the median probability model. We also in-
clude the model averaged estimate arising from (15) in the comparison; this
is the optimal estimate from the internal Bayesian perspective. Finally, we
also consider AIC and BIC. These model selection criteria are most com-
monly used in conjunction with least squares parameter estimates, and that
choice is made for computing the expected predictive losses in Table 1.

The entries in the table were computed by simulating data from the true
function, selecting a model, computing the corresponding function estimate,
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and finally determining the actual loss. This was repeated a total of N =
1000,1000,100 times, respectively, for the three cases in the table, with the
resulting averages forming the table entries. Note that the largest model
sizes considered for the three cases were k = 29,79,79, respectively.

Our main goal was to compare the maximum probability model and the
median probability model. The median probability model is clearly signif-
icantly better, even in terms of this frequentist expected loss. (Again, we
know it is better in terms of Bayesian predictive loss.) Indeed, the median
probability model is almost as good as the model averaging estimate (and
in two cases is even better); since model averaging is thought of as optimal,
its near equivalence with MedianProb is compelling.

Note that AIC does seem to do better than BIC, as reported by Shibata,
but all of the actual Bayesian procedures are considerably better than either.
This is in part due to the fact that the Bayesian procedures use better
parameter estimates than least squares, but the dominance of MedianProb
and ModelAv (but not MaxProb) can be seen to hold even if the superior
shrinkage estimates are also used with BIC and AIC.

3.3.2. Nonorthogonal case. Corollary 2 presented a result for nested mod-
els in the case of an orthogonal design matrix. It is not too surprising that

Table 1

For various n and σ2 the expected loss and average model size for the
maximum probability model (MaxProb), the median probability model
(MedianProb), model averaging (ModelAv), and BIC and AIC, in the

Shibata example

Expected loss [average model size]
MaxProb MedianProb ModelAv BIC AIC

n = 30, σ2 = 1

a = 1 0.99 [8] 0.89 [10] 0.84 1.14 [8] 1.09 [7]
a = 2 0.88 [10] 0.80 [16] 0.81 1.14 [8] 1.09 [7]
a = 3 0.88 [9] 0.84 [17] 0.85 1.14 [8] 1.09 [7]

n = 100, σ2 = 1

a = 1 0.54 [14] 0.51 [19] 0.47 0.59 [11] 0.59 [13]
a = 2 0.47 [23] 0.43 [43] 0.44 0.59 [11] 0.59 [13]
a = 3 0.47 [22] 0.46 [45] 0.46 0.59 [11] 0.59 [13]

n = 2000, σ2 = 3

a = 1 0.34 [23] 0.33 [26] 0.30 0.41 [12] 0.38 [21]
a = 2 0.26 [42] 0.25 [51] 0.25 0.41 [12] 0.38 [21]
a = 3 0.29 [38] 0.29 [50] 0.29 0.41 [12] 0.38 [21]
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such results can be obtained under orthogonality. Quite surprising, however,
is that the orthogonality condition can be removed under the following two
conditions:

Condition 1. Q = γX′X for some γ > 0.

Condition 2. β̃l = bβ̂l, where b > 0, that is, the posterior means are
proportional to the least squares estimates, with the same proportionality
constant across models.

Note that Condition 2 is merely a special case of (17), so the generality
here is in Condition 1, allowing for nondiagonal Q. (Of course, Q = γX′X

is diagonal under orthogonality.)
There are two common scenarios in which Condition 2 is satisfied. The

first is when the reference priors (14) are used, in which case the posterior
means are the least squares estimates. The second is when using g-type nor-
mal priors [cf. Zellner (1986)], where πl(βl|σ) is Nkl

(0, cσ2(X′
l
Xl)

−1), with
the same constant c > 0 for each model. (This constant could be specified or
estimated in an empirical Bayesian context.) It is then easy to verify that
Condition 2 holds with b = c/(1 + c) (irrespective of the prior for σ).

Theorem 2. For a sequence of nested models for which Conditions 1
and 2 hold, the best predictive model is the median probability model given

by (7) or (9).

Proof. From (16) and using Conditions 1 and 2,

R(Ml(j)) = γb2(Hl(j)β̂l(j) − β̄)′X′X(Hl(j)β̂l(j) − β̄).(22)

Noting that XHl(j) = Xl(j) and defining Pl = Xl(X
′
l
Xl)

−1X′
l
, it follows that

R(Ml(j)) = γb2y′

(
Pl(j) −

k∑

i=1

pl(i)Pl(i)

)2

y.

Note that P2
l
= Pl and Pl(i)Pl(j) = Pl(min{i,j}). Hence, expanding the quadratic

in (22) yields

R(Ml(j)) = γb2y′

(
k∑

i=1

pl(i)Pl(i)

)2

y

+ γb2y′

(
Pl(j) − 2

j−1∑

i=1

pl(i)Pl(i) − 2
k∑

i=j

pl(i)Pl(j)

)
y.
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It follows that

R(Ml(j+1))−R(Ml(j)) = γb2

(
1− 2

k∑

i=j+1

pl(i)

)
y′(Pl(j+1) −Pl(j))y.

Since y′(Pl(j+1) −Pl(j))y > 0 and the (1− 2
∑k

i=j+1 pl(i)) are increasing in j
from −1 to +1, moving to a larger model will reduce the risk until (1 −
2
∑k

i=j+1 pl(i)) first turns positive. The conclusion is immediate. �

An example of a nested model in the nonorthogonal case will be given in
Section 4.

3.4. ANOVA. Many ANOVA problems, when written in linear model
form, yield diagonal X′X and any such problems will naturally fit under the
theory of Section 3.1. In particular, this is true for any balanced ANOVA in
which each factor has only two levels.

To see the idea, it suffices to consider the case of two factors A and B
each with two levels. The full two-way ANOVA model with interactions is

yijk = µ + ai + bj + abij + εijk

with i = 1,2, j = 1,2, k = 1,2, . . . ,K and εijk independent N(0, σ2), with
σ2 unknown. In our earlier notation, this can be written

y = Xβ + ε,

where

y = (y111, . . . , y11K , y121, . . . , y12K , y211, . . . , y21K , y221, . . . , y22K)′,

β = (µ,a1, b1, ab11)
′

and X is the 4K × 4 matrix

X =




1 1 1 1
...

...
...

...
1 1 1 1
1 1 −1 −1
...

...
...

...
1 1 −1 −1
1 −1 1 −1
...

...
...

...
1 −1 1 −1
1 −1 −1 1
...

...
...

...
1 −1 −1 1




,
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where the last column is the product of the second and the third, since
a1 = −a2, b1 = −b2, ab11 = ab22 = −ab12 = −ab21. Computation then shows
that X′X = 4KI4, so that the earlier theory will apply.

There are several model comparison scenarios of interest. We use a slight
modification of the previous model notation for simplicity, for example,
M1011 instead of M(1,0,1,1), representing the model having all parameters
except a1.

Scenario 1. All models with the constant µ: Thus the set of models
under consideration is

{M1000,M1100,M1010,M1001,M1101,M1011,M1110,M1111}.

Scenario 2. Interactions present only with main effects, and µ in-

cluded: The set of models under consideration here is {M1000,M1100,M1010,M1110,
M1111}. Note that this set of models has graphical structure.

Scenario 3. An analogue of an unusual classical test: In classical ANOVA
testing it is sometimes argued [cf. Scheffé (1959), pages 94 and 110] that one
might be interested in testing for no interaction effect followed by testing for
the main effects, even if the no-interaction test rejected. (It is argued that
the hypotheses of zero main effects could still be accepted, which would
imply that, while there are differences, the tests do not demonstrate any
differences in the levels of one factor averaged over the levels of the other.)
The four models that are under consideration in this process, including the
constant µ in all, are {M1101,M1011,M1110,M1111}.

We do not comment upon the reasonableness of considering this class of
models, but are interested in the class because it does not have graphical
model structure and yet the median probability model is guaranteed to be in
the class. To see this, consider the possibility that a1 has posterior inclusion
probability less than 1/2, and so would be excluded from the median proba-
bility model. Clearly this can only happen if M1011 has posterior probability
greater than 1/2; but then M1011 would automatically be the median proba-
bility model. Arguing similarly for b1 and ab11, one can conclude that M1111

will be the median probability model, unless one of the other models has
posterior probability greater than 1/2, in which case it will be the median
probability model.

Example 2. Montgomery [(1991), pages 271–274] considers the effects
of the concentration of a reactant and the amount of a catalyst on the yield
in a chemical process. The reactant concentration is factor A and has two
levels, 15% and 25%. The catalyst is factor B, with the two levels “one bag”
and “two bags” of catalyst. The experiment was replicated three times and
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the data are given in Table 2. Note that the classical ANOVA tests of “no
A effect,” “no B effect” and “no interaction effect” resulted in p-values of
0.00008, 0.00236 and 0.182, respectively. The Bayesian quantities that would
be used analogously are the posterior variable inclusion probabilities, p2, p3

and p4. (Strictly, 1−pi would be the analogue of the corresponding p-value.)
To carry out the Bayesian analysis, the reference prior π(µ,σ) ∝ 1

σ was
used for the common parameters, while the standard N(0, σ2) g-prior was
used for a1, b1 and ab11. In each scenario the models under consideration
were given equal prior probabilities of being true. The conditions of Section
3.1 are then satisfied, so that we know that the median probability model will
be the optimal predictive model. For the three scenarios described above the
results of the Bayesian analysis are given in Tables 3–5. In all three scenarios
the median probability model indeed has the lowest posterior expected loss
(as was known from the theory). Interestingly, the median probability model
equals the maximum probability model in all three scenarios and is the
model M1110. The variable inclusion probabilities show clearly that an “A

Table 2

Data for the 22 ANOVA example

Treatment Replicates
combination I II III

A low, B low 28 25 27
A high, B low 36 32 32
A low, B high 18 19 23
A high, B high 31 30 29

Table 3

Scenario 1 (all models). Posterior probabilities and
expected losses for the models. The posterior inclusion

probabilities are p2 = 0.9977, p3 = 0.9514 and
p4 = 0.3621; thus M1110 is the median probability

model

Posterior Posterior
Model probability expected loss

M1000 0.0008 235.47
M1100 0.0342 58.78
M1010 0.0009 177.78
M1001 0.0003 237.43
M1110 0.6019 1.083
M1101 0.0133 60.73
M1011 0.0003 179.74
M1111 0.3483 3.04
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Table 4

Scenario 2 (graphical models). Posterior probabilities
and expected losses for the models. The posterior
inclusion probabilities are p2 = 0.9982, p3 = 0.9644

and p4 = 0.3532; thus M1110 is the median probability
model

Posterior Posterior
Model probability expected loss

M1000 0.0009 237.21
M1100 0.0347 60.33
M1010 0.0009 177.85
M1110 0.6103 0.97
M1111 0.3532 3.05

Table 5

Scenario 3 (unusual classical models). Posterior
probabilities and expected losses for the models. The

posterior inclusion probabilities are p2 = 0.9997,
p3 = 0.9862 and p4 = 0.3754; thus M1110 is the median

probability model

Posterior Posterior
Model probability expected loss

M1011 0.0003 180.19
M1101 0.0138 64.93
M1110 0.6245 1.01
M1111 0.3614 2.78

effect” and a “B effect” should be in the model (with inclusion probabilities
exceeding 0.99 and 0.95, respectively), while the interaction effect has a
moderately small probability (about 1/3) of being in the model.

We also carried out an analysis with the N(0, cσ2) g-prior for a1, b1 and
ab11, but with c being estimated by maximizing the overall marginal den-
sity 1

L

∑
l
ml(y), where the individual marginal densities ml(y) are given by

(13) and L is the number of models under consideration. The conditions of
Section 3.1 are still satisfied, so that we know that the median probability
model will be the optimal predictive model. The results did not significantly
change from the above analysis, however, and so are not reported.

Had σ2 been known in Scenario 1, Corollary 1 would have established that
the median probability model would equal the maximum probability model.
Here σ2 is unknown, however, and it will not always be the case that the
median probability model equals the maximum probability model. Indeed,
we also carried out the analysis of the example utilizing the N(0, σ2) g-prior
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Table 6

Scenario 3 (unusual classical models, with g-prior for µ).
Posterior probabilities and expected losses for the models. The
posterior inclusion probabilities are p2 = 0.876, p3 = 0.714 and

p4 = 0.544; thus M1111 is the median probability model

Posterior Posterior
Model probability expected loss

M1011 0.124 143.03
M1101 0.286 36.78
M1110 0.456 10.03
M1111 0.134 9.41

for µ, as well as for a1, b1 and ab11, and found that the median probabil-
ity model then differed from the maximum probability model in all three
scenarios. Table 6 gives the results for Scenario 3; note that the median
probability model is nearly the lowest probability model! (We do not, how-
ever, recommend this analysis; g-priors should not be used for parameters
common to all models.)

4. Common nonorthogonal nuisance parameters. Frequently all models
will contain “common” parameters β(1) ≡ (β1, . . . , βk1). A typical example
is when all models contain an overall mean β1 [or, equivalently, when the
first column of each model design matrix is (1, . . . ,1)′]. For the orthogonal
case discussed earlier this caused no difficulties. For the nonorthogonal case,
however, this considerably complicates the analysis. Still, we will see that
the median probability model remains optimal under mild modifications of
the previously considered conditions.

To present the results, it is convenient to slightly change notation, writing
the regression parameters of Ml as (β′

(1),β
′
l)
′, with corresponding design

matrix (X(1)Xl). Also, define

Q(1) = I−X(1)(X
′
(1)X(1))

−1X′
(1),

Pl = Q
1/2
(1) Xl(X

′
lQ(1)Xl)

−1X′
lQ

1/2
(1) .

(23)

The necessary conditions are:

Condition 1. Q = γX′X for some γ > 0.

Condition 2. For some fixed b > 0 the posterior means of βl are of the

form β̃l = b(X′
l
Q(1)Xl)

−1X′
l
Q(1)y.

Condition 3. πl(β(1),βl|σ) = πl(βl|σ) (i.e., the prior density for β(1)

in each model is constant).
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A g-type prior for which Condition 2 holds is

πl(βl|σ) = N (0, cσ2(X′
l
Q(1)Xl)

−1),

with the same constant c > 0 for each model. It is then easy to verify that
Condition 2 holds with b = c/(1 + c) (irrespective of the prior on σ). Note
that if X′

(1)Xl = 0, then X′
l
Q(1)Xl = X′

l
Xl, so this would be a standard

g-type prior.

Theorem 3. Under Conditions 1–3 the best predictive model under

squared error loss minimizes

R(Ml) = C + γb2w′

(
Pl − 2

∑

l∗

pl∗Pl·l∗

)
w,(24)

where w = Q1/2y, C is a constant and l · l∗ is the dot-product of l and l∗.

Proof. Write x∗ = (x∗
(1),x

∗
(2)) and X = (X(1),X(2)), and define U =

(X′
(1)X(1))

−1X′
(1) and Vl = (X′

l
Q(1)Xl)

−1X′
l
Q(1). Note that the noncommon

variables in Ml are x∗
(2)Hl2 , where Hl2 is the matrix consisting of the rows

of Hl from k1 + 1 to k. With this notation note that

ŷ ∗
l = x∗

(1)β̃(1) + x∗
(2)Hl2β̃l.(25)

Using Condition 3, it is straightforward to show that

E[β(1)|y,βl] = U(y−Xlβl),

so that

β̃(1) = E[β(1)|y] = U(y−XlE[βl|y]).

Using this in (25), together with Condition 2, yields

ŷ ∗
l

= x∗
(1)U(I− bXlVl)y + bx∗

(2)Hl2Vly

= x∗
(

U(I− bXlVl)
bHl2Vl

)
y.

Defining

Wl =

(
−UXl

Hl2

)
Vl,

it follows (using Condition 1 in the third equality) that

R(Ml) = Ex
∗

[ŷ ∗
l − ȳ∗]2

= b2Ex
∗

[
x∗

(
Wl −

∑

l∗

pl∗Wl∗

)
y

]2

= γb2y′

(
Wl −

∑

l∗

pl∗Wl∗

)′

X′X

(
Wl −

∑

l∗

pl∗Wl∗

)
y.

(26)
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Note that

XWl = (X(1),X(2))

(
−UXl

Hl2

)
Vl

= −X(1)UXlVl + XlVl = Q
1/2
(1) PlQ

1/2
(1) .

Together with (26) this yields

R(Ml) = γb2y′Q
1/2
(1)

(
Pl −

∑

l∗

pl∗Pl∗

)
Q(1)

(
Pl −

∑

l∗

pl∗Pl∗

)
y

= γb2w′

(
Pl −

∑

l∗

pl∗Pl∗

)2

w,

(27)

the last step utilizing (23) and the fact that Q(1) is idempotent.

Because Pl is the projection onto the columns of Q
1/2
(1) Xl that correspond

to the nonzero elements of l, it is clear that P2
l

= Pl and PlPl∗ = Pl·l∗ .
Expanding the quadratic in (27) with

C = γb2w′

(
∑

l∗

pl∗Pl∗

)2

w

yields the result. �

Corollary 3 (Semi-orthogonal case). Suppose Conditions 1–3 hold

and that X′
(2)Q(1)X(2) is diagonal with positive entries, where the full design

matrix is X = (X(1)X(2)). Then, if the class of models under consideration
has graphical model structure, the best predictive model is the median prob-

ability model given by (7).

Proof. Writing X′
(2)Q(1)X(2) = D(d), the diagonal matrix with diago-

nal elements di > 0, Pl can be expressed as

Pl = Q
1/2
(1) X(2)Hl2(H

′
l2
X′

(2)Q(1)X(2)Hl2)
−1

H′
l2
X′

(2)Q
1/2
(1)

= Q
1/2
(1) X(2)Hl2(H

′
l2
D(d)Hl2)

−1
H′

l2
X′

(2)Q
1/2
(1)

= Q
1/2
(1) X(2)(D(d · l))−1X′

(2)Q
1/2
(1) .

Hence, defining u = X′
(2)Q

1/2
(1) w, (24) becomes

R(Ml) = C + γb2u′

[
D(d · l)−1 − 2

∑

l∗

pl∗D(d · l · l∗)−1

]
u

= C + γb2
k∑

i=1

u2
i d

−1
i li

(
1− 2

∑

l∗ : l∗
i
=1

pl∗

)
,
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and the conclusion is immediate. �

Note that X′
(2)Q(1)X(2) will be diagonal if either (i) X′X is diagonal or

(ii) X′
(2)X(2) is diagonal and X′

(1)X(2) = 0.

Corollary 4 (Nested case). Suppose Conditions 1–3 hold and that the

Ml(j), j = 0, . . . , k, are a nested sequence of models. Then the best predictive

model is the median probability model given by (7) or (9).

Proof. For the nested case (24) becomes

R(Ml(j)) = C + γb2w′

(
Pl(j) − 2

j−1∑

i=0

pl(i)Pl(i) − 2
k∑

i=j

pl(i)Pl(j)

)
w.(28)

It follows that

R(Ml(j+1))−R(Ml(j))

= γb2

(
1− 2

k∑

i=j+1

pl(i)

)
w′(Pl(j+1) −Pl(j))w.

Since w′(Pl(j+1) − Pl(j))w > 0 and the (1 − 2
∑k

i=j+1 pl(i)) are increasing
in j from −1 to +1, moving to a larger model will reduce the risk until
(1− 2

∑k
i=j+1 pl(i)) first turns positive. The conclusion is immediate. �

Example 3. Consider Hald’s regression data [Draper and Smith (1981)],
consisting of n = 13 observations on a dependent variable y with four po-
tential regressors: x1, x2, x3, x4. Suppose that the following nested models,
all including a constant term c, are under consideration:

Ml(1) :{c, x4}, Ml(2) :{c, x1, x4},

Ml(3) :{c, x1, x3, x4}, Ml(4) :{c, x1, x2, x3, x4},

again using the notation in (8). We choose the reference prior (14) for the
parameters of each model, which effectively means we are using least squares
estimates for the predictions and ensures that Conditions 2 and 3 are satis-
fied. (Here, the models have two common parameters, the constant term and
the parameter corresponding to variable x4.) Choosing Q = X′X, it follows
that the posterior predictive loss of each model is given by (24).

Two choices of model prior probabilities are considered, P (Ml(i)) = 1/4, i =

1,2,3,4, and P ∗(Ml(i)) = i−1/
∑4

j=1 j−1 [the latter type of choice being dis-
cussed in, e.g., Jeffreys (1961)]. Default posterior probabilities of each model
are then obtained using the Encompassing Arithmetic Intrinsic Bayes Fac-
tor, recommended in Berger and Pericchi (1996a, b) for linear models. The
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resulting model posterior probabilities, P (Ml(i)|y) and P ∗(Ml(i)|y), for the
two choices of prior probabilities, respectively, are given in Table 7. The
table also presents the normalized posterior predictive loss R(Ml(i))−C for
each model.

Since these models are nested, Corollary 4 ensures that the median prob-
ability model is the optimal predictive model. Using (9), it is clear from
Table 7 that Ml(3) is the median probability model for both choices of prior
probabilities. And, indeed, the posterior predictive loss of Ml(3) is the small-
est. Note that Ml(3) is the maximum probability model for the first choice
of prior probabilities, while Ml(2) (which is suboptimal) is the maximum
probability model for the second choice.

5. A geometric formulation. It was stated in the Introduction that, in
general, knowing only the model posterior probabilities does not allow one
to determine the optimal predictive model. This is best seen by looking
at the problem from a geometric perspective which, furthermore, provides
considerable insight into the problem.

Assuming the matrix Q in (5) is nonsingular and positive definite, con-
sider its Cholesky decomposition Q = A′A, where A is a k× k upper trian-
gular matrix. The expected posterior loss (16) to be minimized can then be
written as

R(Ml) = (αl − ᾱ)′(αl − ᾱ),(29)

where αl = AHlβ̃l is a k-dimensional vector and ᾱ = Aβ̄ =
∑

l
plAHlβ̃l. [If

Q = X′X and β̃l = β̂l, one can define αl as αl = XHlβ̃l = Xl(X
′
l
Xl)

−1 X′
l
y,

the projection of y on the space spanned by the columns of Xl.] It follows
that the preferred model will be the one whose corresponding αl is nearest
to ᾱ in terms of Euclidean distance.

The geometric formulation of the predictive problem follows by represent-
ing each model Ml by the point αl. The collection of models thus becomes a
collection of points in k-dimensional space. The convex hull of these points
is a polygon representing the set of possible model averaged estimates ᾱ as

Table 7

Posterior probabilities and predictive losses for Hald ’s data

M l(1) M l(2) M l(3) M l(4)

P (Ml(i)|y) 0.0002 0.3396 0.5040 0.1562
R(Ml(i))−C 0 −808.81 −816.47 −814.43

P ∗(Ml(i)|y) 0.0005 0.4504 0.4455 0.1036
R(Ml(i))−C 0 −808.32 −810.67 −808.31
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the pl vary over their range. Hence any point in this polygon is a possible
optimal predictive model, depending on the pl, and the goal is to geomet-
rically characterize when each single model is optimal, given that a single
model must be used.

Consider the simple situation in which we have two covariates x1 and x2

and three possible models:

M10 :{x1}, M01 :{x2}, M11 :{x1, x2},

again writing, for example, M01 instead of M(0,1). These can be represented
as three points in the plane. (If the three models had a constant, or intercept,
term, then the three points would lie on a plane in three-dimensional space,
and the situation would be essentially the same.)

Depending on the sample correlation structure, the triangle whose vertices
are α01, α10 and α11 can have three interesting distinct forms. These three
forms are plotted in Figure 1. Subregions within each plot will be denoted
by the vertices; thus, in Figure 1(a) [α01, F,C] denotes the triangle whose
vertices are α01, F and C.

Each triangle can be divided into optimality subregions, namely the set
of those ᾱ which are closest to one of the αl. These are the regions defined
by the solid lines. Thus, in Figure 1(a), the triangle [α10, F,C] defines those
points that are closer to α10 than to the other two vertices; hence, if ᾱ were
to fall in this region the optimal single model would be M10. If ᾱ were to fall
in the triangle [α01,B,E] the optimal single model would be M01 and, if ᾱ

were to fall in the region between the two solid lines the optimal single model
would be M11. It is easy to see that these optimality regions are formed by
either (i) connecting the perpendicular bisectors of the sides of the triangle,
if all angles are less than or equal to 90◦, or (ii) drawing the perpendicular
bisectors of the adjacent side of an angle that is greater than 90◦.

In each plot, A, B and C are the midpoints of the line segments −−−−→α10α01,
−−−−→α01α11 and −−−−→α10α11, respectively, while O is the midpoint of the triangle.
These are of interest because they define regions such that, if ᾱ lies in the
region, then the model corresponding to the vertex in the region has the
largest posterior probability. Thus, in Figure 1(a), if ᾱ lies in the polygon
[α10,A,O,C], then M10 must be the maximum posterior probability model.

Note that the maximum posterior probability regions do not coincide
with the optimal predictive model regions. As a dramatic illustration of the
difference, consider Figure 1(a) and suppose that ᾱ lies on the line segment
−−→
EF . Then M11 is the optimal predictive model, even though it has posterior
probability 0. Also, either M10 or M01 has posterior probability at least 1/2
on this line segment, yet neither is the best predictive model.

The dashed lines form the boundaries defining the median probability
models. Thus, if ᾱ lies in the triangle [α10,A,C], then M10 will be the
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(a) (b) (c)

Fig. 1. Three possible scenarios for the graphical representation of predictive model se-
lection from among M10 :{x1}, M01 :{x2} and M11 :{x1, x2}.

median probability model, while if ᾱ lies in the polygon [C,A,B,α11], then
M11 will be the median probability model. To see why this is so, note that

the line segment
−→
AC consists of the points for which P (M10|y) = 1/2 (i.e.,

for which M10 has posterior probability 1/2). But then clearly the inclusion
probability for variable x2 is also equal to 1/2 on this line segment, since

p2 = P (M01|y) + P (M11|y) = 1 − P (M10|y). Similarly,
−−→
AB consists of the

points for which the inclusion probability for variable x1 is equal to 1/2.
It is immediate that the median probability model in (7) is defined by the
indicated regions.

Figures 1(a) and (b) thus show that the median probability model will
not always equal the optimal predictive model. Indeed, the two are the same
only in the situation of Figure 1(c). In a sense, the theory in the preceding
sections arose out of efforts to characterize situations in which the predictive

Table 8

Posterior probabilities and posterior expected losses for Hald ’s data

Model P (M l|y) R(M l) Model P (M l|y) R(M l)

c 0.000003 2652.44 c,2,3 0.000229 353.72
c,1 0.000012 1207.04 c,2,4 0.000018 821.15
c,2 0.000026 854.85 c,3,4 0.003785 118.59
c,3 0.000002 1864.41 c,1,2,3 0.170990 1.21
c,4 0.000058 838.20 c,1,2,4 0.190720 0.18

c,1,2 0.275484 8.19 c,1,3,4 0.159959 1.71
c,1,3 0.000006 1174.14 c,2,3,4 0.041323 20.42
c,1,4 0.107798 29.73 c,1,2,3,4 0.049587 0.47
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risk representation would be as in Figure 1(c). We found that this is so if
X′X is diagonal and (17) holds, as in Section 3.1. We also found this to be
true in the nested model case discussed in Section 3.3. [Indeed, the resulting
figure is simply a rotated version of Figure 1(c).] Subsequently we were able
to develop the more general algebraic theories in those sections, but they
were based on insights obtained through the geometric formulation.

One can seek alternative theories based on observations in the geometric
formulation. For instance, notice that if the triangle in Figure 1(b) were
equilateral, then O and G would coincide and the maximum probability
model would equal the optimal predictive model. Unfortunately, we could
not find any useful general conditions under which the triangle would be
equilateral.

6. Concluding comments.

6.1. When the theory does not apply. The conditions of the optimality
theory for the median probability model are quite strong and will often not
apply. Nevertheless, the fact that only the median probability model seems to
have any optimality theory whatsoever suggests that it might quite generally
be successful, even when the optimality theory does not apply.

Example 3 (Continued). Suppose that all models (including at least the
constant term) are considered for Hald’s data. This does not formally satisfy
the theory in Section 4, since the models are not nested and the conditions
of Theorem 3 do not apply. But here the situation is simple enough that we
can directly compute the posterior predictive losses corresponding to each
of the possible models, using (16) and assuming equal prior probabilities of
the models. The results are given in Table 8.

Computation of the posterior inclusion probabilities yields

p1 =
∑

l : l1=1

P (Ml|y) = 0.954556, p2 =
∑

l : l2=1

P (Ml|y) = 0.728377,

p3 =
∑

l : l3=1

P (Ml|y) = 0.425881, p4 =
∑

l : l4=1

P (Ml|y) = 0.553248.

Thus the median probability model is {c, x1, x2, x4}, which from Table 8
clearly coincides with the optimal predictive model. Note that the risk of
the maximum probability model {c, x1, x2} is considerably higher than that
of the median probability model.

This example is typical; in our experience the median probability model
considerably outperforms the maximum probability model in terms of pre-
dictive performance. At the very least this suggests that the median prob-
ability model should routinely be determined and reported along with the
maximum probability model.
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6.2. When does the median probability model fail? Suppose that the only
models entertained are those with a constant term and a single covariate xi,
i = 1, . . . , k, with k ≥ 3, as well as the model with only a constant term. All
models have equal prior probability of 1/(k +1). Furthermore, suppose that
all covariates are nearly perfectly correlated with each other and with y.
Then the posterior probability of the constant model will be near zero, and
that of each of the other models will coincide with the posterior inclusion
probabilities of each of the xi, and will be approximately 1/k. Since these
posterior inclusion probabilities are less than 1/2, the median probability
model will be the constant model, which will have very poor predictive
performance compared to any of the other models.

One might be tempted to conclude from this that the median probability
model might be problematical if there are highly correlated covariates. We
have not yet observed such a difficulty in practice, however. Indeed, the
Hald example given in the previous section is an example in which there is
high correlation between covariates, yet we saw that the median probability
model was still the best.

6.3. Use of posterior inclusion probabilities. In addition to being key to
defining the median probability model, the posterior inclusion probabilities
in (6) can be important tools in assessing the effect of covariates, as indicated
in the ANOVA example. One can, furthermore, define joint posterior inclu-
sion probabilities of covariates; these can be very useful in unraveling the
effects on model selection of correlations among covariates. See Nadal (1999)
for examples. Finally, posterior inclusion probabilities are a key element in
some of the most effective search strategies in model space; compare Berger
and Molina (2002). The importance of posterior inclusion probabilities was
emphasized in Mitchell and Beauchamp (1988).

Acknowledgments. The authors are grateful to Merlise Clyde for sug-
gesting the example in Section 6.2. We are also grateful to Edward George
for useful discussions.
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Ph.D. thesis, Univ. Simón Boĺıvar, Venezuela.
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