Determinants of Wages *Stat 825 Spring 2005*

Xiuyun Zhang Hongshu Chen

- Introduction
- Data Description
- Methods
- Results
- Conclusion

- Wages: Pretty Important in Our Lives
- Determinants:
 - Education, Age, Experience, Race, Gender, Occupation...
- Gender Difference?

- 1985 Current Population Survey (CPS 1985)
- Random Sample of 534 Persons
- 11 Variables, 4 Continuous, 7 Categorical
- No Missing Data

Name	Explanation	Values		
EDUCATION	Number of years of education.	$2 \sim 18$		
LIVES_IN_SOUTH	Indicator variable for Southern Region	Yes, No		
SEX	Indicator variable for sex	Female, Male		
EXPERIENCE	Number of years of work experience.	$0 \sim 55$		
UNION	Indicator variable for union membership	Yes, No		
WAGE	Wage (dollars per hour).	$1 \sim 26.29$		
AGE	Age (years).	$18 \sim 64$		
RACE	Race.	(1=Other, 2=Hispanic, 3=White)		
OCCUPATION	Occupational category	Management, Sales, Clerical,		
		Service, Professional, Other		
SECTOR	Sector	(0=Other, 1=Manufacturing,		
		2=Construction).		
MARR	Marital Status	(0=Unmarried, 1=Married)		

Linear Regression Model:

$$y_i = x_i\beta + \epsilon_i \tag{1}$$

where $\epsilon_i \sim Normal(0, \sigma^2)$ is independent normal distributed random error.

$$Y \mid \beta, \sigma^2, X \sim Normal(X\beta, \ \sigma^2 I)$$
⁽²⁾

• The parameters here are (β, σ^2) , and β is what we concern about.

Bayesian Regression Methods

- Set up Prior for (β, σ^2)
 - Ridge Regression & Lasso
 - G-Prior
 - Normal-Gamma Prior

Ridge Regression & Lasso

• RR: Normal Prior for β

$$\hat{\beta}_{ridge} = \arg\min_{\tilde{\beta}} \left((Y - X\tilde{\beta})'(Y - X\tilde{\beta}) + \lambda\tilde{\beta}'\tilde{\beta}) \right)$$
(3)

 $\beta \mid \sigma^2, Y, X \sim Normal(\hat{\beta}_{ridge}, \ (X'X + \lambda I)^{-1}X'X(X'X + \lambda I)^{-1}\sigma^2)$ (4)

• Lasso: Laplace Prior for β

$$\hat{\beta}_{lasso} = \arg\min_{\tilde{\beta}} (Y - X\tilde{\beta})'(Y - X\tilde{\beta})$$

s.t.
$$\sum_{j=1}^{m} |\beta_j| \le s$$

(5)

G-Prior

 \boldsymbol{X} and \boldsymbol{Y} are inputs and outputs in the training data set

- 1. Get $\hat{\beta}$ and $\hat{\sigma}$ by apply Ridge Regression or Lasso to the prior data
- 2. Randomly draw n observations \tilde{X} from X
- 3. Generate response for the new observations by:

$$\tilde{Y} = \tilde{X}\hat{\beta} + \boldsymbol{\epsilon}$$

where ϵ is the vector of independent random variables from $Normal(0, \hat{\sigma}^2)$

4.
$$\boldsymbol{X} = [X; \tilde{X}], \, \boldsymbol{Y} = [Y; \tilde{Y}]$$

5. $\hat{\beta}_g = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$

 $\hat{\beta}_g$ is the estimate of β by using g-prior

- Suppose β and σ^2 are independent from each other, and $P(\log \sigma) \propto 1$, then $\sigma^2 \sim Gamma(0, 0)$, also assume $\beta \sim Normal(\mu_\beta, \Sigma)$
 - where μ_{β} , Σ are estimated from the posterior of β by fitting Ridge Regression on the prior data(equation 4)
- Use Gibbs Sampling Algorithm
- The joint distribution of (Y, β) is:

$$\begin{pmatrix} Y \\ \beta \end{pmatrix} \mid \sigma^2, X \sim Normal \left(\begin{pmatrix} X\mu_\beta \\ \mu_\beta \end{pmatrix}, \begin{pmatrix} X\Sigma X' + \sigma^2 I & X\Sigma \\ \Sigma X' & \Sigma \end{pmatrix} \right)$$
(6)

• Thus, the conditional posterior density of β given σ^2 is

$$\beta \mid \sigma^2, Y, X \sim Normal(\xi, \Phi)$$
 (7)

where

$$\xi = \mu_{\beta} + \Sigma X' (X \Sigma X' + \sigma^2 I)^{-1} (Y - X \mu_{\beta})$$
(8)

$$\Phi = \Sigma - \Sigma X' (X \Sigma X' + \sigma^2 I)^{-1} X \Sigma$$
(9)

Normal-Gamma Prior

• The joint posterior distribution of (β, σ^2) is:

$$P(\beta, \sigma^{2} \mid Y, X) \propto P(Y \mid \beta, \sigma^{2}, X) P(\beta, \sigma^{2} \mid X)$$

$$= Normal(X\beta, \sigma^{2}I) \times Normal(\mu_{\beta}, \Sigma) \times \frac{1}{\sigma^{2}}$$
(10)

Fixing β , we can get something proportional to:

$$(\sigma^2)^{-n/2+1} \exp\left(-\frac{(Y-X\beta)'(Y-X\beta)}{2\sigma^2}\right)$$

$$\sigma^2 \mid \beta, Y, X \sim Inv - Gamma\left(\frac{n}{2}, \ \frac{(Y - X\beta)'(Y - X\beta)}{2}\right)$$
(11)

- Represent Categorical Variables in Several Binary Vairables
 - Race: Hispanic, White
 - Occupation: Management, Sales, Clerical, Service, Professional
 - Sector: Manufacturing, Construction
- Logarithm Wages
- Normalize All Variables
- Randomize and Divided into Three Parts: Prior(134), Training(300), Testing(100)

Regression Parameters by Using G-Prior

Histograms of Samples of Regression Coefficients for Each Variable

Estimate of β by Using *Normal-Gamma* Prior

Estimate of β by Ridge Regression and Lasso

Estimate of β by OLS and PCR

MSE of Testing Data

OLS	PCR	Ridge	Lasso	g-prior(ridge)	g-prior(lasso)	Normal-Gamma Prior
4.47	0.69	0.69	0.69	1.32	1.10	0.70

95% Confidence Intervals of β by Using <i>Normal-Gamma</i> Prior								
	eta_1	eta_2	eta_3	eta_4	eta_5	eta_6	β_7	β_8
2.5%	0.17	-0.15	-0.26	0.02	0.09	0.08	-0.03	-0.11
97.5%	0.34	-0.00	-0.11	0.09	0.24	0.16	0.11	0.04
includes 0		\checkmark					\checkmark	\checkmark
	eta_9	eta_{10}	eta_{11}	β_{12}	β_{13}	β_{14}	β_{15}	eta_{16}
2.5%	0.00	0.09	-0.14	-0.06	-0.19	0.08	-0.03	-0.05
97.5%	0.16	0.25	0.02	0.10	-0.02	0.26	0.12	0.09
includes 0	\checkmark		\checkmark	\checkmark			\checkmark	\checkmark

 Education, Sex, Union, Experience, Age, Management, Service, Professional

Top 5 Predictors in Models						
	1^{st}	2^{nd}	3^{rd}	4^{th}	5^{th}	
Ridge	Education	ition Sex Management Age		Age	Professional	
	(0.26)	(-0.15)	(0.13)	(0.11)	(0.11)	
Normal	Education	Sex	Management	Professional	Union	
-Gamma	(0.25)	(-0.19)	(0.17)	(0.17)	(0.17)	
PCR	Education	Sex	Management	Age	Marital Status	
	(0.34)	(-0.17)	(0.14)	(0.13)	(0.10)	

Conclusion

- Bayesian Methods are Better than OLS
- RR, Lasso, Normal-Gamma Prior and PCR are Comparable
- Predictivity of Linear Model is Not Good
- Gender Discrimination: under same conditions, the females earn 83% the wages of the males
- Important Predictors: Education, Sex, Management, Age, Professional

Thanks!