Missing Data Imputation in the Bayesian Framework

by John Draper, David Kadonsky

June 9, 2005

Introduction

- Dr. Paul Robbins of The Ohio State University developed a survey on lawn care beliefs and behaviors in 2001 to challenge commonly held beliefs in the environmental literature.
 - Unfortunately, some variables were missing in the survey data.

Introduction

- Dr. Paul Robbins of The Ohio State University developed a survey on lawn care beliefs and behaviors in 2001 to challenge commonly held beliefs in the environmental literature.
 - Unfortunately, some variables were missing in the survey data.
- A variety of imputation methods (cold deck, hot deck, regression based, and Bayesian) are explored to analyze the advantages and disadvantages of each in the context of these survey data.

Purpose

 The primary purpose of the paper is to focus on developing a comprehensive Bayesian imputation method that would improve on established methods.

Purpose

- The primary purpose of the paper is to focus on developing a comprehensive Bayesian imputation method that would improve on established methods.
- Ideally, the augmented data would more closely resemble the true sampled population and therefore, the logistic regression models derived would lead to more accurate conclusions.

Data

- National telephone survey conducted by the Survey Research Center at The Ohio State University in 2001 on behalf of Dr. Paul Robbins.
- Asked questions on the opinions, behaviors and knowledge of lawn care
- Missing data values come primarily from the household income and housing value variables.

Methods

- Cold Deck Imputation
- Hot Deck Imputation
- Non-random Regression
- Bayesian Imputation

Cold Deck Imputation

- Advantages:
 - simple
 - unbiased for observed sample

Cold Deck Imputation

- Advantages:
 - simple
 - unbiased for observed sample
- Disadvantages:
 - does not use any concomitant information
 - ignores any missing data mechanism
 - if MAR, then cold deck will be biased
 - large variance in imputed missing values

Hot Deck Imputation

- Advantages:
 - fairly simple
 - uses concomitant information
 - can capture crude missing data mechanisms

Hot Deck Imputation

- Advantages:
 - fairly simple
 - uses concomitant information
 - can capture crude missing data mechanisms
- Disadvantages:
 - must discretize continuous concomitant data
 - no distinct values imputed

Non-random Regression

- Advantages:
 - strong use of concomitant data
 - can capture complex missing data mechanisms

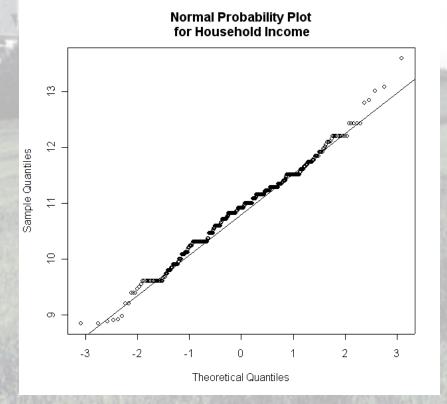
Non-random Regression

- Advantages:
 - strong use of concomitant data
 - can capture complex missing data mechanisms
- Disadvantages:
 - deterministic
 - cannot take any exogenous information into account

- Advantages:
 - strong use of concomitant data
 - can capture complex missing data mechanisms
 - can take any exogenous information into account

- Advantages:
 - strong use of concomitant data
 - can capture complex missing data mechanisms
 - can take any exogenous information into account
- Disadvantages:
 - complexity
 - strong distributional assumptions

Requires normality for imputation to be reasonable.



 $[y, ln(income)|x] = [y|ln(income), x1, x2] \times [ln(income)|x1, x2]$ (1)

where x1 are the variables used to predict y (the final variable of interest), x2 are the variables to predict income and $x=(x_1,x_2)$. This model can be simplified by noting that income does not depend on x1 and once income is given, y does not depend on x2. Therefore, the model reduces to:

 $[y, ln(income)|x] = [y|ln(income), x1] \times [ln(income)|x2]$ (2)

• Prior data says: $ln(income) \sim N(\mu_0, \sigma^2)$

• Data model says: $ln(income)|x2 \sim N(\mathbf{X}\beta, \tau^2)|$

- Prior data says: $ln(income) \sim N(\mu_0, \sigma^2)$
- Data model says: $ln(income)|x2 \sim N(\mathbf{X}\beta, \tau^2)$.
- Original Model:

 $ln(income) = \mathbf{X}\beta + \epsilon_i \ where \ \epsilon_i \sim N(0, \tau^2).$

• Taking prior information into account:

 $ln(income) = \mathbf{Y}\beta^* + \epsilon_i \ where \ \epsilon_i \sim N(0, \tau^2)$

The prior placed upon β^* is the following:

$$\beta^* \sim MVN(\mu_0, \Lambda_0) where$$

$$\mu_0^{\mathbf{T}} = (\theta, 0, 0, \dots, 0) and$$

$$\Lambda_0 = \begin{bmatrix} \tau^2 & 0 & 0 & \dots & 0 \\ 0 & 100 & 0 & \dots & 0 \\ \vdots & & & \\ 0 & 0 & 0 & \dots & 100 \end{bmatrix}$$

(3)

(4)

(5)

and the prior on $ln(income) \sim N(\theta, \tau^2)$.

The prior placed upon β^* is the following:

$$\beta^* \sim MVN(\mu_0, \Lambda_0) where$$

$$\mu_0^T = (\theta, 0, 0, \dots, 0) and$$

$$\Lambda_0 = \begin{bmatrix} \tau^2 & 0 & 0 & \dots & 0 \\ 0 & 100 & 0 & \dots & 0 \\ \vdots & & & \\ 0 & 0 & 0 & \dots & 100 \end{bmatrix}$$

and the prior on $ln(income) \sim N(\theta, \tau^2)$.

The likelihood is:

 $ln(income)|\mathbf{Y},\beta^* \sim N(\mathbf{Y}\beta^*,\sigma^2\mathbf{I})|$

(6)

(3)

(4)

(5)

$$\beta^* \mid ln(income), \mathbf{Y} \sim N(\mu_{\mathbf{n}}, \mathbf{\Lambda}_{\mathbf{n}}) where$$

$$\mu_{\mathbf{n}} = (\mathbf{\Lambda}_0^{-1} + n(\frac{1}{\sigma^2}\mathbf{I}))^{-1}(\mathbf{\Lambda}_0^{-1} * \mu_0 + n(\frac{1}{\sigma^2}\mathbf{I})\hat{\beta})$$

$$\mathbf{\Lambda}_{\mathbf{n}}^{-1} = \mathbf{\Lambda}_0^{-1} + n(\frac{1}{\sigma^2}\mathbf{I})$$
(9)

and $\hat{\beta}$ is a k×1 vector of least squares estimates.

$$\beta^* \mid ln(income), \mathbf{Y} \sim N(\mu_{\mathbf{n}}, \mathbf{\Lambda}_{\mathbf{n}}) where$$
(7)
$$\mu_{\mathbf{n}} = (\mathbf{\Lambda}_0^{-1} + n(\frac{1}{\sigma^2}\mathbf{I}))^{-1}(\mathbf{\Lambda}_0^{-1} * \mu_0 + n(\frac{1}{\sigma^2}\mathbf{I})\hat{\beta})$$
(8)
$$\mathbf{\Lambda}_{\mathbf{n}}^{-1} = \mathbf{\Lambda}_0^{-1} + n(\frac{1}{\sigma^2}\mathbf{I})$$
(9)

and $\hat{\beta}$ is a k×1 vector of least squares estimates.

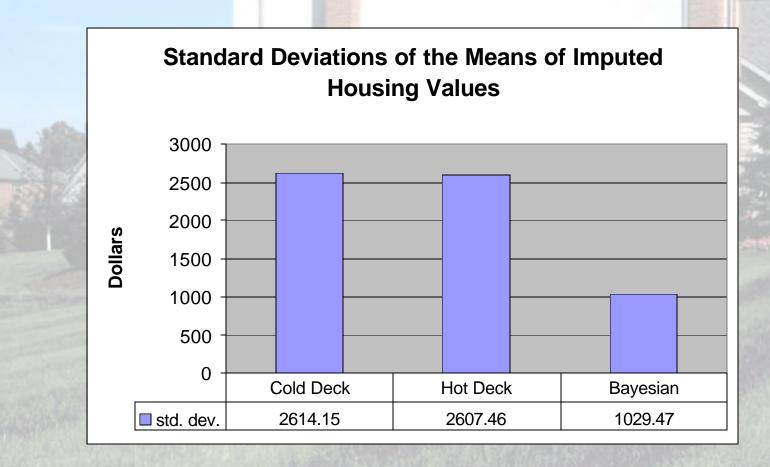
 To impute the missing values, one simply computes the posterior predictive mean of the data, Yß^{*}.

- Imputing the housing value
 - To get some idea as to how reliable our imputed estimates are, we chose to use each non-deterministic method to impute the missing data values 5,000 times.
 - The resulting mean values of the full data sets (observed and imputed housing value) were accumulated.

Method	mean (in \$)	std.dev. (in \$)
Dropped	167900	N/A
Cold Deck	167904.2	2614.15
Hot Deck	168064.3	2607.46
Bayesian	163488	1029.47
Regression	162100	N/A

Method	mean (in \$)	std.dev. (in \$)
Dropped	167900	N/A
Cold Deck	167904.2	2614.15
Hot Deck	168064.3	2607.46
Bayesian	163488	1029.47
Regression	162100	N/A

- Cold deck and hot deck imputation methods seem to be centered around the sample mean housing value
- Regression suggests that respondents with lower housing values may be underrepresented.
- Bayesian falls between Regression and cold deck



 Bayesian reduces standard deviation of full data means of housing value by 60%

Results – Logistic Model

Method	Intercept	gender1	metro1	hvalcat1	hvalcat2
Dropped	1.984	0.712	1.132	-0.959	-1.829
Cold Deck	1.679	0.536	1.329	-0.533	-1.24
Hot Deck	1.854	0.547	1.292	-0.634	-1.476
Regression	1.747	0.525	1.353	-0.559	-1.32
Bayesian	1.669	0.557	1.353	-0.589	-1.483

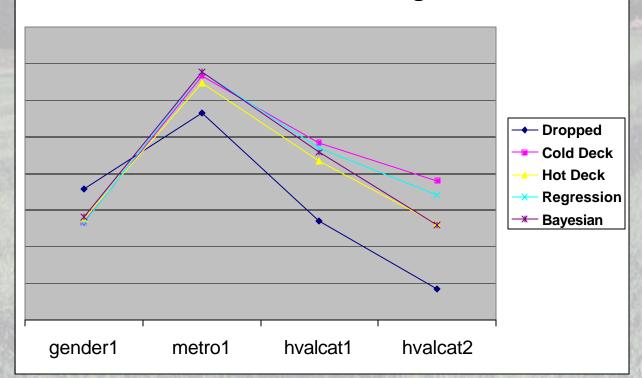
gender1 is coded for Female

metro1 is coded for Urban or Suburban (vs. Rural) *hvalcat1* is coded for Housing Value between \$100,000 and \$150,000 *hvalcat2* is coded for Housing Value less than \$100,000

Results – Logistic Model

Method	Intercept	gender1	metro1	hvalcat1	hvalcat2
Dropped	1.984	0.712	1.132	-0.959	-1.829
Cold Deck	1.679	0.536	1.329	-0.533	-1.24
Hot Deck	1.854	0.547	1.292	-0.634	-1.476
Regression	1.747	0.525	1.353	-0.559	-1.32
Bayesian	1.669	0.557	1.353	-0.589	-1.483

Re-scaled Coefficients of Logistic Model



Conclusions

- Very little gained by imputing housing value by cold deck and hot deck.
- Enormous reduction in variance of the imputed means of housing value using Bayesian methods.
- Very little difference in resulting logistic models.

Further Research

- FRITZ imputation
 - (Federal Reserve Imputation Technique Zeta)
- Predictive Computational techniques
- Other Bayesian modeling approaches