
B
ayesian

L
ogistic

R
egression

M
odel

for
C

redit
Score

D
ata

P
resen

ted
b
y

H
o
n
g
fei

L
i,

L
a
i
W

ei

1



Data source

Our data set consists of 1312 applications for credit cards and their results

(approved or rejected). The data comes from Professor William Greene’s (New

York University) on-line data for his book ”Econometric Analysis, 5th Edition”.

(http://pages.stern.nyu.edu/ wgreene/Text/economet ricanalysis.htm)
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Data source (Cont.)

Data set contains one categorical response variable and 10 explanatory variables.

- Approval = response/output. 1 if application for credit card accepted, 0 if not.

- MDR = Number of major derogatory reports.

- Age = Age n years plus twelfths of a year.

- Income = Yearly income (divided by 10,000)

- IncPer = Yearly income per dependent (divided by 10,000)

- Ownrent = Dummy variable, 1 if owns their home, 0 if rent

- Selfempl = Dummy variable, 1 if self employed, 0 if not.

- Dependent = 0 + number of dependents.

- Curadd = months living at current address.

- ActiveCard = number of active credit accounts

- MajorCard = number of major credit cards held.
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Purpose

• Randomly choose 2/3 data as the training data, and the left as testing data.

• Fit linear logistic regression model. (Generalized Linear Model(GLM))

• Fit Bayesian logistic regression model(Bayesian Generalized Linear

Model(BGLM)) based on different prior distribution.
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MCMC by Bugs from R

• To perform MCMC sampling, we use the BUGS statistical package in R working

directory.

• We discard the first 500 draws of the parameter values (the burn-in).

• After checking some criteria for evidence of convergence. we obtain 1000 more

draws.
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Posterior distribution

• We build a hierarchical Bayesian logistic regression model, with logit(pi) = Xβ,

where X is the covariate n × p matrix, and β is the coefficient p × 1 vector.

•

yi|pi ∼ Ber(pi)

where pi = logit−1(Xβ).

• The prior distribution for βj is

βj ∼ N(β0j , σ
2

j ).

• The posterior distribution for β is

f(β|y) ∝ f(y, β)

∝ f(y|β)f(β)
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Linear Logistic Regression

The best model in linear logistic regression is:

logit(pi) = log(
pi

1 − pi

) = β0 + β1(MDR) + β2(Selfempl) + β3(Ownrent)

+β4(Income) + β5(Dependent) + β6(ActiveCard)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.81266 0.23525 3.454 0.000551 ***

MDR -1.63581 0.16102 -10.159 < 2e-16 ***

Selfempl -0.69401 0.35242 -1.969 0.048919 *

Ownrent 0.51542 0.22709 2.270 0.023228 *

Income 0.19760 0.07377 2.679 0.007392 **

Dependent -0.30401 0.08109 -3.749 0.000177 ***

ActiveCard 0.11425 0.02081 5.491 4.01e-08 ***
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BGLM based on the model selected by GLM

Add some noninformative prior to the parameters,

β ∼ (0, 103 × I)

where β = (β0, β1, · · · , β6)
T , and I are identity matrix.

parameter 2.5 % 25% 50% 75% 97.5% mean sd

intercept 0.350 0.644 0.810 0.971 1.267 0.807 0.239

MDR -1.986 -1.777 -1.660 -1.546 -1.347 -1.663 0.166

Income 0.066 0.157 0.207 0.255 0.351 0.207 0.074

Ownrent 0.101 0.360 0.518 0.670 0.979 0.521 0.233

Selfempl -1.394 -0.984 -0.721 -0.455 0.029 -0.710 0.364

Dependent -0.459 -0.360 -0.307 -0.256 -0.133 -0.307 0.081

ActiveCard 0.075 0.099 0.115 0.129 0.157 0.115 0.022

Table 1: posterior distribution paramters summary with noninformative prior

8



Compare GLM with BGLM

• The MLE in GLm are very close to the Bayesian estimators(posterior mean and

posterior median).

• They have the same 84.47% of correct classification for the testing data set.

• For GLM, all of the 95% CI don’t include zero. However, 95% CI posterior CI for

’Selfempl’ variable dose include zero for BGLM.
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BGLM selection

We include all the explanatory variables in the model and set the noninformative

priors. We select explanatory variables based on whether the 95% posterior CI

include zero or not.
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Figure 1: Posterior distribution of the parameters. (Red lines give the 95% posterior

confidence interval
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BGLM selection(Cont.)

Finally, we have the model:

logit(pi) = β0 + β1(MDR) + β2(Ownrent) + β4(Dependent) + β5(ActiveCard)

which is different from the model we got in GLM. However, it has few variables and

83.98% of correct classification, which is a little bit samller than before.
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Prior selection

• Informative Prior:

Although we do not have experts to provide any extra information, we can obtain

that by the previous experiment, ie, the MLE given by GLM.

βintercept ∼ N(0.81266, 0.0553)

βMDR ∼ N(−1.63581, 0.0259)

βIncome ∼ N(0.19760, 0.005442)

βOwnrent ∼ N(0.51542, 0.05157)

βSelfempl ∼ N(−0.69401, 0.1242)

βDependent ∼ N(−0.30401, 0.0065756)

βActiveCard ∼ N(0.11425, 0.000433)
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Prior selection(Cont.)

• Mixed prior:

We assign some informative priors on some βj , since we have some confidence

to believe the relationship between the covariates and the response. We assign

information by using uniform distribution and put restrictions on the areas that

the parameters can choose.

βintercept ∼ N(0, 1000)

βMDR ∼ Uniform(−5, 0)

βIncome ∼ N(0, 1000)

βOwnrent ∼ N(0, 1000)

βSelfempl ∼ N(0, 1000)

βDependent ∼ Uniform(−1, 0)

βActiveCard ∼ N(0, 1000)
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Prior selection

Prior Percentages of correct classification

noninformative 0.8447

informative 0.8447

mixed 0.8592

Table 2: Predicitive accuracy results

• Noninformative prior doesn’t improve the predictive accuracy compared to GLM.

• Comparing informative prior with noninformative prior, they have the same

predictive accuracy.

• For mixed priors. The result indicates that the mixed priors improve the model.
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Discussion

• Since Bayesian method takes more time and effect than the frequentist method,

we explore if it is worth using Bayesian model for our dataset.

• Choosing priors is very important.

• Bayesian model sometimes is sensitive to the prior choosing.
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