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Disease mapping

e Definition
-Mapping the spatial dispersion of a certain
disease across the study area

 Objective
-Infer the geographic distribution of the rates
and then identify areas of higher or lower

Incidence.
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Mapping Relative Risk

e Relative risk measures how much a particular
risk factor influences the risk of a specified
outcome (e.g., cancer mortality)

e Classical approach is mapping SMRs
(standardized mortality/morbidity rates) for
subregions based on Poisson model

e« Compute P-values for SMRs to identify areas
with significantly high (or low) relative risk
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Poisson Model

For rare events a Poisson model is commonly
adopted.

Oi |Ei Y i~ POiSSO”(Eiy i)
SMR = O/E; is the MLE estimator of Relative
Risk from the Poisson model, with estimated
standard error s =,/O /E; asymptotically.
P-value can then be computed for each area
with a certain SMR
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Problems of SMR

« More extreme values of the estimates
may be based on a few cases only In areas
with small population.

e Rare events in small areas can lead to
extra-Poisson variation.

e Spatial correlation in the Relative risks is
not taken into account.
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Bayesian approach

e Hierarchical model

— Enable us to incorporate multiple sources of
data and knowledge (e.g., spatial
autocorrelation)

e Prior specification
— Nonspatial random effect to describe
unstructured heterogeneity.

— Spatial random effect can be expressed via
Markov random fields models (CAR, EXp)
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Data

e County map and census population for Ohio

e Observed lung cancer mortality at county
level
— National Cancer Institute

e Expected lung cancer mortality
— Population in a county multiplied by crude rate
e Covariate variables
— Air quality data from EPA
— Poverty level: Census
e Software:
— ArcView GIS, WInBUGS (GeoBUGS), and R.
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Population Distribution
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Air quality index
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Poverty percentage
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Standard mortality rate (SMR)

Relative risk (SMR)
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P-value(RR greater than 1)
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Hierarchical Bayesian Model
using CAR prior

Likelihood:
O[i] ~ Poisson(mul[i])
First stage:
Log(muli]) = Log(E[i]) + phi[i] + theta]i]
RR[I] = exp(phil[i])
Second stage:
phi[1:N] ~ car.normal(adj[], weights[], num[], tau.phi)
Priors:
tau.phi ~ Gamma(taub.alpha, taub.beta)
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Model diagram

taub.alpha taub.beta
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Adj[i]
Weights[i]
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Example of Source Code

model {
# Likelihood
for (iinl1:N){
obs.m[i] ~ dpois(muli])
theta[i] ~ dnorm(0O, tau.theta)
log(mu[i]) <- log(e.m[i]) + betaO + betal*log.emis[i] + phi[i] + theta]i]
RR[i] <- exp(betaO + betal*pov[i] + phi[i] + theta[i])

}
# CAR prior distribution for relative risk:

phi[1:N] ~ car.normal(adj[], weights[], num[], tau.phi)
for(k in 1:sumNumNeigh) { weights[k] <- 1}
# Other priors:
betaO ~ dflat()
betal ~ dnorm(0.0, 1.0E-5)
#beta2 ~ dnorm(0.0, 1.0E-5)
tau.phi ~ dgamma(0.5, 0.0005)
tau.theta ~ dgamma(0.5, 0.0005)
» sigma.phi <- sqrt(1 / tau.phi)
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Model selection

Model DIC pD
No spatial structured variance 922.3 87.7
Structured & unstructured CAR 926.5 935
EXP 916.3 834
1 covariate log.emis CAR 923.6 89.7
EXP_916.7 83.3
1 covariate pov CAR 924.3 90.6
EXP_916.2 82.9
2 covariates log.emis and pov  CAR 921.7 88.5
EXP 9174 84.5
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History graphs
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History graphs
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Statistical results

One covariate (pov) with spatial structured
variance

sigma.phi 210.8 56.5 120.3 1415 2344 2546 2868 7.0 3
deviance 833.3 12.9 809.8 824.7 832.6 8419 8594 1.0 900
pD =82.9 and DIC = 916.2 (using the rule, pD = var(deviance)/2)
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Relative risks
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P-value of RR>1
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Discussion and Conclusions

e Bayesian approach helps create more
Interpretable map by:
— Applying priors
— Incorporate covariates

e p-value map identify several potential
hotspots.

e Age and race adjusted rates may be used to
compute expected number of cases.

e Space and time
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