Natural Image Segment Classification

- Student: Brian Rigling
- Delve image dataset
 - http://www.cs.toronto.edu/~delve/data/datasets.html
 - Classify 3x3 (9 pixel) full color image segments
 - Classes: cement, brickface, grass, foliage, sky, path, window
 - Source: Carla Brodley, Vision Group, U. of Massachusetts, Nov.
 1990 segments extracted from 7 outdoor images

Dataset contents

- 210 training instances (30 of each class)
- 2100 testing instances (300 of each class)
- 16 continuous valued features
- No information is missing.

Extracted Features

	Feature:	Range:	Description:
1.	short-line-density-5	[0,1]	Low contrast line count
2.	short-line-density-2	[0,1]	High contrast line count
3.	vedge-mean	$[0,\infty)$	Mean horizontal contrast
4.	vedge-sd	$[0,\infty)$	Standard deviation of horizontal contrast
5.	hedge-mean	$[0,\infty)$	Mean vertical contrast
6.	hedge-sd	$[0,\infty)$	Standard deviation of vertical contrast
7.	intensity-mean	$[0,\infty)$	Average intensity, (R+G+B)/3
8.	rawred-mean	$[0,\infty)$	Average red over segment
9.	rawblue-mean	$[0,\infty)$	Average blue over segment
10.	rawgreen-mean	$[0,\infty)$	Average green over segment
11.	exred-mean	$(-\infty, \infty)$	Excess red, $(2R - (G + B))$
12.	exblue-mean	$(-\infty, \infty)$	Excess blue, $(2B - (G + R))$
13.	exgreen-mean	$(-\infty, \infty)$	Excess green, $(2G - (T + B))$
14.	value(V)-mean	$(-\infty, \infty)$	3-D non-linear transformation of RGB
15.	saturation(S)-mean	$(-\infty, \infty)$	(H,S,V) = f(R,G,B)
16.	hue(H)-mean	$(-\infty, \infty)$	

Methods Previously Applied

Radford Neal

• 1-NN1: Classify by comparing to the instance's nearest neighbor in the training data

CART software provided by California Statistical Software, Inc.

• cart-1: Creates decision boundaries parallel to the input axes

Michael Revow

• **knn-class-1:** Classify by comparing to the instance's K nearest neighbors in the training data

Steve Waterhouse

- **hme-el-1:** Hierarchical mixtures-of-experts trained with Bayesian methods (ensemble learning)
- **hme-ese-1:** Hierarchical mixtures-of-experts trained with early stopping
- hme-grow-1: Hierarchical mixtures-of-experts trained with growing and early stopping
- me-el-1: Mixtures-of-experts trained with Bayesian methods (ensemble learning)
- **me-ese-1:** Mixtures-of-experts trained with early stopping

Related Work

- Song Chun Zhu CIS OSU
 - Segmentation of full images
 - Z.W. Tu, S. C. Zhu, "Image Segmentation by Data Driven Markov Chain Monte Carlo", To appear in PAMI.
- Delve: Michael Revow:
 - Classifying hand-written characters
 - http://www.cs.toronto.edu/~revow/
- Delve: Steve Waterhouse: PhD thesis (Oct. 1997)
 - Mixtures of experts
 - http://www.oigeeza.com/steve/