Letter Recognition

Bautista, Dianne Carrol Chen, Hongshu Paul, Rajib Jun 8th, 2004

Outline

Introduction
Preliminary analysis
Results & Discussions
- 1-NN
- LDA
- SVM
Conclusions

Introduction

Multi-Class Recognition Problem
Objective:

to classify each of a large number of black and white rectangular pixel displays as one of the 26 capital letters of the English alphabet.

Data Description

Source: David Slate (Jan 1991)
 Odesta Corporation, Evanston, IL 60201

- Size: 20,000 (obs) X 17 (variables)
- Details:

-based on 20 different fonts

-representing five different stroke styles--simplex, duplex, triplex, complex, and Gothic
-and six different letter styles--block, script, italic, English, German, and Italian.

Generation of Character Images

- calls made to a character-image generating program with uniformly distributed parameter values for font type, letter of the alphabet, linear magnification, aspect ratio, and horizontal & vertical warp
- character image represented in terms of the vector coordinates of the end-points of its constituent line segments
- Warping was applied to these coordinates
- line segments were then converted to raster format forming a rectangular array of pixels, each of which was "on" or "off"
- The totality of "on" pixels represented the image of the desired character
- average dimension of the arrays was 45 pixels high by 45 pixels wide

Sample Images

Attribute Information

- Each image associated with a vector of 16 numerical attributes
- numerical attributes scaled to fit into a range of integer values from 0-15
- attributes represent primitive statistical features of pixel distribution

Sample Image and Pixel Distribution

Frequency Distribution of Letters

There are no missing data

Previous Work

Method	Accuracy	Author, Year
Holland Style Classifier	82.7	Frey, Slate (1991)
First-NN	95.67	Aha et al (1991)
Alloc80	93.6	Taylor (1994)
LVQ	92	
C4.5 + CART	90	Dietterich and Bakiri (1995)
+ ECOC		
SVM	97.98	Hsu and Lin (2002)
1-NN+Adaboost	96	Athitsos (2004)

Exploratory Cluster

Performance Measures

Sensitivity (S1)
S1 = P { X = 'A' | Y = 'A' }
= P { X='A' ∩ Y='A' } / P{Y='A' }
Specificity (S2)
S2 = P { Y = 'A' | X = 'A' }
= P { X='A' ∩ Y='A' } / P{X='A' }

- Entails retaining all elements of the training set in memory and using them to classify each member of the testing set
- To determine the class of a member in the testing set, its Euclidean distance from each member in the memory is calculated.
- It is then assigned the same classification as the classification of the member it is nearest to

Use the randperm function in matlab to create training and testing sets
 Traing -16000

 Testing-4000

 Code the 1-NN algorithm in matlab

 Run 12 experiments

Average success rate: 95.81%
Consistency (standard deviation): 0.13%
Acceptable low error rates
High sensitivity
High specificity

1 Nearest Neighbor Worst Error Rate Statistics

Letter	Mean	STD	Min	Max
Н	10.43	3.15	5.67	16.54
K	8.73	2.94	3.97	14.46
В	7.47	2.53	4.83	13.84
R	7.03	2.60	3.57	11.25
Е	6.45	1.67	4.29	11.03
F	6.12	1.93	2.84	9.35

1 Nearest Neighbor Best Error Rate Statistics

Letter	Mean	STD	Min	Max
А	0.79	0.84	0.00	2.12
Ζ	1.47	0.98	0.00	3.10
Y	2.17	0.91	0.69	3.68
М	2.18	1.13	1.16	4.90
S	2.20	0.87	0.71	3.59
Q	2.84	0.87	1.27	4.09
V	3.26	1.26	0.63	4.97

We also investigated what is the nature of misclassification,

For example, the misclassification rate of "B" as "R" is 2.22%

 And the misclassification rate of "F" as "P" is 2.75% etc

As attributes are quantized from 0~15, so we have situation of ties
 In the case of tie, we choose the first class Percentage of Error Due to Ties

Expt #: 1 2 3 4 5 6 7 8 9 10 11 12

%of

error 27.1 26.4 22.4 28.1 26.8 22.4 29.1 20.6 23.3 21.5 28.1 20.7

Let Pr(G|X) be the posterior of classification given attribute X
 f_k(X)=conditional density of X given G=k
 п_k =prior probability of class k
 By Bayes theorem

 $Pr(G=k | X=x) = f_k(x). \pi_k / \Sigma_1 f_1(x) . \pi_1$

LDA assumes

 f_k(x) = (1/(2π) p/2 | Σ_k | ^{1/2}) exp{ - ¹/₂ (x - μ_k)^T Σ_k - ¹ (x - μ_k) }

 So the logarithm of the posterior
 probability is

 log{ Pr(G=k | X=x) } = -.5* log{ (1/(2π) ^p | Σ_k |)} - ¹/₂ (x - μ_k)^T Σ_k - ¹ (x - μ_k)+log(π_k)

 LDA classifies based on the logarithm of the posterior probability

We coded the LDA in R
Average success rate: 69.88%
Consistency (standard deviation): 0.21% Worst Classified

Letter s	Average accuracy
E	44.3
G	45.6
Η	46.8
S	46.9
Y	50.1

Best Classified

Letters	Average accuracy
А	85.8
Μ	88.6
V	85.4
W	85.9

Nature of misclassification

- The misclassification rate of "E" as "G" is 10.9%
- The misclassification rate of "G" as "C" is 18%
- The misclassification rate of "H" as "K" is 8.1%

 SVM is a classification method to maximize the margin between two classes $\{-1, 1\}$ $\min_{\beta,\beta_0\xi_i}\frac{1}{2}\|\beta\|^2 + \gamma \sum_{i=1}^N \xi_i$ s.t. $\xi_i \ge 0, y_i(\beta \cdot \phi(x_i) + \beta_0) \ge 1 - \xi_i \forall i$ Decision rule $\hat{y}_i = \operatorname{sgn}(\beta \cdot \phi(x_i) + \beta_0)$

For Multi Classes (k=1, 2...n)

 Solve one optimization problem
 Combining several SVMs for binary classifications
 One-against-all: n SVMs
 One-against-one: n(n-1)/2 SVMs
 DAG

LIBSVM: one-against-one

Success rate: 97.98%

OSU SVM: matlab toolbox for LIBSVM

Does not work for our problem: 16%

SVM toolbox by Dr. Schwaighofer

Error-Correcting Output Codes

• ECOC

		Code Word													
Class	f_0	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}
0	1	1	-0	-0	- 0 -	-0-	1	- 0 -	1	- 0 -	- 0	1	1	- 0 -	1
1	-0	0	1	1	1	1	0	1	- 0 -	1	1	0	0	1	0
2	1	0	0	1	- 0	0	0	1	1	1	1	0	1	0	1
3	0	0	1	1	0	1	1	1	0	0	0	0	1	0	1
4	1	1	1	0	1	-0	1	1	0	- 0	1	0	0	- 0	1
5	0	1	0	0	1	1	0	1	1	1	0	0	0	- 0	1
6	1	-0	1	1	1	0	0	0	0	1	0	1	0	- 0	1
7	0	0	0	1	1	1	1	0	1	0	1	1	0	0	1
8	1	1	0	1	- 0	1	1	0	0	1	0	0	0	1	1
9	0	1	1	1	0	0	-0	0	1	0	1	0	0	1	1

Hamming distance: number of bits differ

Gaussian RBF kernel
ECOC table with string length of 15
Run 12 experiments
Average success rate: 96.96%
Consistency (standard deviation): 0.26%

Comparison of SVM Methods

Comparison of ECOC Methods

	Method	Number of SVMs	Success rate (%)	Tuning of Paramete rs
A REPORT OF A CONTRACT OF	one- against-all	26	97.88	Yes
CONTRACTOR	one- agianst- one	325	97.98	Yes
	DAG	325	97.98	Yes
	ECOC	15	96.96	No

Method	Success rate (%)	Length of codes
Tree- based (C4.5, CART)	Above 90	62
SVM	96.96	15

Best Classified: A, S, U, Z, T
Worst Classified: D, B, K, R, H
Some misclassification patterns in confusion matrix: P & F; I & J; B & S & R

Clusters of Letters 7 6 5 4 3 2 R F В S Х Н 0 Ν G Q D κ Ζ С E Μ U J W P Т V Υ A L

Findings

- 1. 1-NN and SVM gave higher sensitivity and specificity, compared with the LDA. The difference in both measures is at least 15%
- 2. 1-NN and SVM showed faster learning rates compared with LDA. We note however that LDA's accuracy (70%) did not significantly change when the training set was reduced from 16,000 to 1,600.

Findings

- J. In terms of classification errors, 1-NN and SVM algorithms produce similar misclassification patterns in their respective confusion matrices.
- 4. The most computing intensive method is SVM, and least is LDA.
- 5. The OSU-SVM Toolbox (Ahalt, Ma,&, Zhao,2002) may need code modification as it did not work for this particular data set.

Limitation

-methods treated all sixteen attributes equally.

-relationships between the features to determine plausibility of dimension reduction was not fully explored.
(e.g., elimination, linear or non-linear combinations of some features)

Next Steps

• a. Consider different types of boosting to improve the performance of 1-Nearest Neighbor.

b. Distance metrics, other than Euclidean, may be explored for the nearest-neighbor algorithm.

Next Steps:

- c. Optimize the parameters of the SVM ECOC.
- Also try using different ECOC tables.

d. In view of recent developments, explore hybrid methods which combine the advantages of statistical and non-statistical algorithms. For example, doing a tree-based method and a multiple logistic regression.

End of Presentation

Acknowledgement

Prof. Prem Goel
Prof. Joseph Verducci
Prof. Yoonkyung Lee
Prof. Stanley Ahalt
Dr. Junshui Ma