Letter Recognition

Bautista, Dianne Carrol
Chen, Hongshu
Paul, Rajib
Jun 8 ${ }^{\text {th }}, 2004$

Outline

- Intióoduction
, Preliminary analysis
, Results \& Discussions
$-1-\mathrm{NN}$
- LDA
- SVM
- Conclusions

Intifoduction

, Multi-Class Recognition Problem
, Objective:
to classify each of a large number of black and white rectangular pixel displays as one of the 26 Capital letters of the English alphabet.

Dalta Description

」 Soulice: David Slate (Jan 1991)
Odesta Corporation, Evanston, IL 60201
, Size: 20,000 (obs) $\times 17$ (variables)
, Details:
-based on 20 different fonts
-representing five different stroke styles--simplex, duplex, triplex, complex, and Gothic -and six different letter styles--block, script, italic, English, German, and Italian.

Generation of Character Images

, caills made to a character-image generating program with uniformly distributed parameter values for font type, letter of the alphabet, linear magnification, aspect ratio, and horizontal \& vertical warp
, charracter image represented in terms of the vector coordinates of the end-points of its constituent line segments Warping was applied to these coordinates line segments were then converted to raster format forming a rectangular array of pixels, each of which was "on" or "off" The totality of "on" pixels represented the image of the desired character

- average dimension of the arrays was 45 pixels high by 45 pixels wide

Sample Images

Atturibute Information

, Each image associated with a vector of 16 numerical attributes
, numerical attributes scaled to fit into a range of integer values from 0-15 attributes represent primitive statistical features of pixel distribution

Sample Image and Pixel Distribution

Frequency Distribution of Letters

A -789	$\mathrm{~F}-775$	$\mathrm{~K}-739$	$\mathrm{P}-803$	$\mathrm{U}-813$
$\mathrm{~B}-766$	$\mathrm{G}-773$	$\mathrm{~L}-761$	$\mathrm{Q}-783$	$\mathrm{~V}-764$
$\mathrm{C}-736$	$\mathrm{H}-734$	$\mathrm{M}-792$	$\mathrm{R}-758$	$\mathrm{~W}-752$
$\mathrm{D}-805$	$\mathrm{I}-755$	$\mathrm{~N}-783$	$\mathrm{~S}-748$	$\mathrm{X}-787$
$\mathrm{E}-768$	$\mathrm{~J}-747$	$\mathrm{O}-753$	$\mathrm{~T}-796$	$\mathrm{Y}-786$

There are no missing data

Previous Work

Method	Accuracy	Author, Year
Holland Style Classifier	82.7	Frey, Slate (1991)
First-NN	95.67	Aha et al (1991)
Alloc80	93.6	Taylor (1994)
LVQ	92	
C4.5 + CART	90	Dietterich and Bakiri (1995)
+ ECOC	97.98	Hsu and Lin (2002)
SVM	96	Athitsos (2004)
1-NN+Adaboost		

Exploratory Cluster

Clusters of Letters

Performance Measures

, Sensitivity (S1)

$$
\begin{aligned}
\text { S11 } & =P\left\{X==^{\prime} A^{\prime} \mid Y=^{\prime} A^{\prime}\right\} \\
& =P\left\{X=A^{\prime} A^{\prime} \cap Y==^{\prime} A^{\prime}\right\} / P\left\{Y=^{\prime} A^{\prime}\right\}
\end{aligned}
$$

Specificity (S 2)

$$
\begin{aligned}
S 2 & =P\left\{Y=' A^{\prime} \mid X=^{\prime} A^{\prime}\right\} \\
& =P\left\{X==^{\prime} A^{\prime} \cap Y=^{\prime} A^{\prime}\right\} / P\left\{X=^{\prime} A^{\prime}\right\}
\end{aligned}
$$

1 Nearest Neighbor

- Entails retaining all elements of the training set in memory and using them to classify each member of the testing set
, 0 determine the class of a member in the testing set, its Euclidean distance from each member in the memory is calculated.
- It is then assigned the same classification as the classification of the member it is nearest to

1 Nearest Neighbor

, Use the randperm function in matlab to create training and testing sets
, Traing -16000
Testing-4000
Code the 1-NN algorithm in matlab

- Run 12 experiments

1 Nearest Neighbor

\checkmark Average success rate: 95.81\%
, Consistency (standard deviation): 0.13\%
, Acceptable low error rates
, High sensitivity

- High specificity

1 Nearest Neighbor

Worst Error Rate Statistics

Letter	Mean	STD	Minn	Max
H	10.43	3.15	5.67	16.54
K	8.73	2.94	3.97	14.46
B	7.47	2.53	4.83	13.84
R	7.03	2.60	3.57	11.25
E	6.45	1.67	4.29	11.03
F	6.12	1.93	2.84	9.35

1 Nearest Neighbor

Best Error Rate Statistics

Letter	Mean	STID	Min	Max
A	0.79	0.84	0.00	2.12
Z	1.47	0.98	0.00	3.10
Y	2.17	0.91	0.69	3.68
M	2.18	1.13	1.16	4.90
S	2.20	0.87	0.71	3.59
Q	2.84	0.87	1.27	4.09
V	3.26	1.26	0.63	4.97

1 Nearest Neighbor

, We also investigated what is the nature of misclassification,
, For example, the misclassification rate of "D" as "R" is 2.22\%
And the misclassification rate of "F" as "P" is 2.75% etc

1 Nearest Neighbor

, As aitifibutes are quantized from $0 \sim 15$, so we have situation of ties
In the case of tie, we choose the first class Percentage of Error Due to Ties

$$
\begin{array}{lllllllllllll}
\hline \text { Expt \#: } 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline \text { \%of } & & & & & & & & & & & \\
\text { error } & 27.1 & 26.4 & 22.4 & 28.1 & 26.8 & 22.4 & 29.1 & 20.6 & 23.3 & 21.5 & 28.1 & 20.7
\end{array}
$$

Linear Discriminant Analysis

, Let Pr(G|X) be the posterior of classification given attribute X
, $f_{k}(X)=$ conditional density of X given $G=k$
, $\Pi_{k}=$ prior probability of class k
By Bayes theorem

$$
\operatorname{Pr}(G=k \mid X=x)=f_{k}(x) \cdot \Pi_{k} / \Sigma_{l} f_{1}(x) \cdot n_{l}
$$

Linear Discriminant Analysis

- LDA assumes
$f_{k}(\mathbf{x})=\left(1 /(2 \pi) p / 2\left|\boldsymbol{\Sigma}_{\mathbf{k}}\right|^{1 / 2}\right) \exp \left\{-1_{2}\left(\mathbf{x}-\boldsymbol{\mu}_{\boldsymbol{k}}\right)^{\top} \boldsymbol{\Sigma}_{\mathbf{k}}{ }^{-1}\left(\mathbf{x}-\boldsymbol{\mu}_{\boldsymbol{k}}\right)\right\}$
, So the logarithm of the posterior probability is

$$
\log \{\operatorname{Pr}(G=\mathrm{K} \mid \mathrm{X}=\mathrm{x})\}=-5^{*} \log \left\{\left(1 /(2 \pi)^{p \mid}\left|\Sigma_{k}\right|\right)\right\}
$$

- LDA classifies based on the logarithm of the posterior probability

Linear Discriminant Analysis

, We coded the LDA in R
Average success rate: 69.88%
, Consistency (standard deviation): 0.21%
Worst Classified

Letter	Average accuracy
s	44.3
E	45.6
G	46.8
H	46.9
S	50.1
Y	

Linear Discriminant Analysis

Best Classified

Letters	Average accuracy
A	85.8
M	88.6
V	85.4
W	85.9

Linear Discriminant Analysis

, Naiture of misclassification
JThe misclassification rate of "E" as "G" is $10,9 \%$
, The misclassification rate of " G^{\prime} as " C^{\prime} is 18%

- The misclassification rate of " $\mathrm{H}^{\prime \prime}$ as " K " is 8.1\%

Support Vector Machines

, SVM is a classification method to maximize the margin between two classes $\{-1,1\}$

$\xi_{i} \geq 0, y_{i}\left(\beta \cdot \phi\left(x_{i}\right)+\beta_{0}\right) \geq 1-\xi_{i} \forall i$

- Decision rule

$$
\hat{y}_{i}=\operatorname{sgn}\left(\beta \cdot \phi\left(x_{i}\right)+\beta_{0}\right)
$$

Support Vector Machines

, For Multu Classes ($k=1,2 \ldots, n$)

- Solve one optimization problem
- Combining several SVMs for binary classifications
- One-against-all: n SVMs
- One-against-one: $n(n-1) / 2$ SVMs
- DAG

Support Vector Machines

- LIBSVM: one-against-one
- Success rate: 97.98\%
, OSU SVM: matlab toolbox for LIBSVM
-Does not work for our problem: 16\%
SVM toolbox by Dr. Schwaighofer
- Error-Correcting Output Codes

Support Vector Machines

, ECOC

Class	Code Word														
	f_{0}	f_{1}	f_{2}	$f 3$	f_{4}	f_{5}	f6	f_{7}	$f s$	$f 9$	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}
0	1	1	0	0	0	0	1	0	1	0	0	1	1	0	1
1	0	0	1	1	1	1	0	1	0	1	1	0	0	1	0
2	1	0	0	1	0	0	0	1	1	1	1	0	1	0	1
3	0	0	1	1	0	1	1	1	0	0	0	0	1	0	1
4	1	1	1	0	1	0	1	1	0	0	1	0	0	0	1
5	0	1	0	0	1	1	0	1	1	1	0	0	0	0	1
6	1	0	1	1	1	0	0	0	0	1	0	1	0	0	1
7	0	0	0	1	1	1	1	0	1	0	1	1	0	0	1
8	1	1	0	1	0	1	1	0	0	1	0	0	0	1	1
9	0	1	1	1	0	0	0	0	1	0	1	0	0	1	1

- Hamming distance: number of bits differ

Support Vector Machines

- G'aussian RBF kernel
, ECOC table with string length of 15
, Run 12 experiments
Average success rate: 96.96\%
- Consistency (standard deviation): 0.26\%

Support Vector Machines

Comparison of SVM Methods

Method	Number of SVMs	Success rate (\%)	Tuning of Paramete rs
One- against-all	26	97.88	Yes
one- agianst- one	325	97.98	Yes
DAG	325	97.98	Yes
ECOC	15	96.96	No

Comparison of ECOC Methods

Method	Success rate $(\%)$	Length of codes
Tree- based (C4.5, CART)	Above 90	62
SVM	96.96	15

Support Vector Machines

, Best Classified: A, S, U, Z, T
, Worst Classified: D, B, K, R, H
, Some misclassification patterns in confusion matrix: P \& F; I \& J; B \& S \& R

Support Vector Machines

Clusters of Letters

Findings

- 1. 1-NN and SVM gave higher sensitivity and specificity, compared with the LDA. The difference in both measures is at least 15\%
, 2. 1-NN and SVM showed faster learning rates compared with LDA. We note however that LDA's accuracy (70%) did not significantly change when the training set was reduced from 16,000 to 1,600 .

Findings

- 3. In terms of classification errors, 1-NN and SVM algorithms produce similar misclassification patterns in their respective confusion matrices.

4. The most computing intensive method is SVM, and least is LDA.
5. The OSU-SVM Toolbox (Ahalt, Ma,\&, Zhao,2002) may need code modification as it did not work for this particular data set.

Limitation

-methods treated all sixteen attributes equally.
-relationships between the features to determine plausibility of dimension reduction was not fully explored.
(e.g., elimination, linear or non-linear combinations of some features)

Next Steps

, Consider different types of boosting to improve the performance of 1-Nearest Neighbor.
b. Distance metrics, other than Euclidean, may be explored for the nearest-neighbor algorithm.

Next Steps:

, c. Optimize the parameters of the SVM ECOC.
, Also try using different ECOC tables.
, d. In view of recent developments, explore hybrid methods which combine the advantages of statistical and non-statistical algorithms. For example, doing a tree-based method and a multiple logistic regression.

End of Presentation

Acknowledgement

, Prof. Prem Goel
, Profí, Joseph Verducci
, Prof. Yoonkyung Lee

- Prof. Stanley Ahalt
- Dr. Junshui Ma

