Model selection for Credit Card Approval

Shuyan Wan,
Hongfei Li,
Hao Hui

I. Introduction

Problem Description and background:
When a person applies for a new credit card, the credit card company would decide whether to issue him the card based on his personal information and financial record.
we would like to conduct a research related to credit card approval based on several factors which most banks consider.

Literature Review

- three categories of major classification algorithms:
- Decision Tree / Rule based

Classifiers

- Statistical Classifiers;
- Neural Network Classifiers.

Decision Tree / Rule based Classifiers

o In a node m, representing a region Rm with Nm observations, let
$\hat{p}_{m k}=\frac{1}{N_{m}} \sum_{x_{i} \in R_{m}} I\left(y_{i}=k\right)$,
the proportion of class k observations in node m. Then we classify the observations in node m to class $k(m)=$ arg max $\mathrm{k} \hat{p}_{m k}$, the majority class in node m.

II. Preliminary Analysis

- Data Description:

Our data set consists of 1319 applications for credit cards and their results (approved or rejected). The data comes from Professor William Greene's (New York University) online data for his book "Econometric Analysis, 5th Edition", provided by AE. (http://pages.stern.nyu.edu/~wgreene/Text/ econometricanalysis.htm)

Two note-worthy features

- There are some missing data in the predictor "Age". We will use nearest neighbor method to handle these.
- There are some people with same records but different results of their application, even their ages are the same. Use jittering for age.

Brief explanation of the variables:

- Approval = response/output. 1 if application for credit card accepted, 0 if not.
- Major = Number of major derogatory reports
- Age = Age n years plus twelfths of a year + jittering.
- Income = Yearly income (divided by 10,000)
- Avgexp = Average monthly credit card expenditure
- Ownrent = Dummy variable, 1 if owns his home, 0 if rent
- Selfempl = Dummy variable, 1 if self employed, 0 if not.
- Dependent = $1+$ number of dependents, applicant himself is regarded as one dependent.
- Curadd = months living at current address
- ActiveCard = number of active credit accounts
- MajorCard = number of major credit cards held.

Graphical summaries:

Correlation Matrix

Correlation of Coefficients:
(Intercept) Major Age Income Avgexp Ownrent Selfempl
Major -0.0048614
Age -0.6171099-0.0424090
Income - 0.3005576 0.0405857-0.1272267
Avgexp -0.1018250 -0.0016668-0.0118810-0.0730608
Ownrent 0.1501756 0.0361958-0.2274511-0.1517531 0.0508048
Selfempl -0.0707626-0.0799180 0.0569033-0.2094046 0.11616010 .0354740
Dependent - 0.13975030 .0509208 0.0181660-0.1111812-0.0503892-0.1152073-0.0544166
Curadd $0.1315405-0.0566883-0.4688740-0.0007789-0.0009823-0.1922742-0.0208237$
Majorcard -0.3925220 $-0.0120166-0.0747958-0.17842110 .06245500 .04735580 .0490531$
Activecard -0.1201610 -0.2997068 0.0576801-0.0748448-0.1003962-0.2173886 0.0799234
Dependent Curadd Majorcard
Major
Age
Income
Avgexp
Ownrent
Selfempl
Dependent
Curadd 0.1221446
Majorcard 0.02012420 .1340061
Activecard -0.0226648 $0.0034587-0.0497721$

Boxplots

Boxplots(II) and Table

	Selfempl (0-no)	Selfempl (1-yes)
Approval (0- no)	268	28
Approval (1- yes)	960	63

Approval

III. Main Analysis

- Method I. Classification tree
summary for the training data:
tree(formula = Approval ~Selfempl + Ownrent + Majorcard + Major
+ Income +
Avgexp + Dependent + Curadd + ActiveCard, data = card)
Variables actually used in tree construction:
[1] "Avgexp" "Major" "ActiveCard" "Income" "Dependent"
[6] "Selfempl"
- Number of terminal nodes: 13
- Residual mean deviance: $0.05204=46.16$ / 887
- Misclassification error rate: $0.01444=13$ / 900

Tree Table

```
```

- node), split, n, deviance, yval, (yprob)

```
```

- node), split, n, deviance, yval, (yprob)

```
    * denotes terminal node
```

 * denotes terminal node
 1) root 900 970.700 1(0.2300 0.770000)
 1) root 900 970.700 1(0.2300 0.770000)
 2) Avgexp<0.46 221 104.300 0 (0.9367 0.063350)
 2) Avgexp<0.46 221 104.300 0 (0.9367 0.063350)
 8) ActiveCard<1.5 63 17.740 0 (0.9683 0.031750)
9) ActiveCard<1.5 63 17.740 0 (0.9683 0.031750)
16) Income<2.8134 41 0.000 0(1.0000 0.000000) *
16) Income<2.8134 41 0.000 0(1.0000 0.000000) *
17) Income>2.8134 22 13.400 0 (0.90910.090910)
17) Income>2.8134 22 13.400 0 (0.90910.090910)
34) Income<3.33145 6.7300(0.6000 0.400000) *
34) Income<3.33145 6.7300(0.6000 0.400000) *
35) Income>3.3314 17 0.000 0(1.0000 0.000000) *
35) Income>3.3314 17 0.000 0(1.0000 0.000000) *
9) ActiveCard>1.547 51.150 0 (0.7660 0.234000)
9) ActiveCard>1.547 51.150 0 (0.7660 0.234000)
18) Dependent<0.5 27 34.370 0 (0.6667 0.333300)
18) Dependent<0.5 27 34.370 0 (0.6667 0.333300)
36) Income<2.67 18 19.070 0(0.7778 0.222200)
36) Income<2.67 18 19.070 0(0.7778 0.222200)
72) Income<2.467 13 16.050 0(0.6923 0.307700)
72) Income<2.467 13 16.050 0(0.6923 0.307700)
144) ActiveCard<5 7 5.7420(0.8571 0.142900) *
144) ActiveCard<5 7 5.7420(0.8571 0.142900) *
145)ActiveCard>5 6 8.3180(0.5000 0.500000)*
145)ActiveCard>5 6 8.3180(0.5000 0.500000)*
73) Income>2.4675 0.000 0(1.0000 0.000000) *
73) Income>2.4675 0.000 0(1.0000 0.000000) *
37) Income>2.67 9 12.370 1(0.4444 0.555600) *
37) Income>2.67 9 12.370 1(0.4444 0.555600) *
19) Dependent>0.5 20 13.000 0(0.9000 0.100000)
19) Dependent>0.5 20 13.000 0(0.9000 0.100000)
38) Income<2.9 10 10.010 0 (0.8000 0.200000)
38) Income<2.9 10 10.010 0 (0.8000 0.200000)
76) Income<1.95455 0.000 0(1.0000 0.000000) *
76) Income<1.95455 0.000 0(1.0000 0.000000) *
77) Income>1.954556.730 0(0.6000 0.400000) *
77) Income>1.954556.730 0(0.6000 0.400000) *
39) Income>2.9 10 0.000 0(1.0000 0.000000) *
39) Income>2.9 10 0.000 0(1.0000 0.000000) *
5) Major>0.5 111 11.4100 (0.9910 0.009009)
5) Major>0.5 111 11.4100 (0.9910 0.009009)
10) Selfempl:0 102 0.000 0 (1.0000 0.000000) *
10) Selfempl:0 102 0.000 0 (1.0000 0.000000) *
11) Selfempl:19 6.279 0(0.8889 0.111100) *
11) Selfempl:19 6.279 0(0.8889 0.111100) *
3) Avgexp>0.46 679 0.000 1(0.0000 1.000000) *
```
            3) Avgexp>0.46 679 0.000 1(0.0000 1.000000) *
```


The graphic tree

Prediction based on test data:

predict(object $=$ card.tree, newdata $=$ test.card, type $=$ "tree")
Variables actually used in tree construction:
[1] "Avgexp" "Major" "ActiveCard" "Income" "Dependent"
[6] "Selfempl"
Number of terminal nodes: 13
Residual mean deviance: $0.1903=77.27 / 406$
Misclassification error rate: $0.01909=8 / 419$

Results

- Avgexp --an important factor in explaining the response.
- If a person spends more than 4600 dollars a month with a credit card, he will get his application for a new credit card approved.
- Explore other important factors that will affect credit card company's decision for those people who don't have a credit card or who never uses a credit card even if he has one and thus with a monthly expenditure less than 460 dollars. Try our second method logistic additive model for the subset of data!

What does Classification Tree tell us?

First Step: Interactions?

Fit a logistic linear model with these two interactions

Value Std. Error t value
(Intercept) -4.1302777733 1.454052564-2.8405285
Major -4.1734938593 4.261504253-0.9793476
Activecard 0.08725261900 .0426700802 .0448197
Age 0.03122187430 .0276030881 .1311008
Selfempl 0.61968664900 .9273369010 .6682433
Income -0.0377325619 0.282275008 -0.1336731
Dependent -0.8781425957 0.443802604-1.9786783
Ownrent -0.2134269692 0.862998289-0.2473087
Curadd 0.00375125770 .0082113490 .4568382
Majorcard 1.31546801051 .0938654291 .2025867
Major:Age 0.04525953010 .0858801770 .5270079
Curadd:Income -0.0006090426 0.001399399-0.4352173

build a logistic linear model without interactions

Value Std. Error t value (Intercept) -3.996717756 1.377657126-2.9010976 Major -2.172780323 1.012372466-2.1462262
Activecard 0.0900058140 .0427803602 .103905 Age 0.0350677550 .0269210321 .3026156 Selfempl 0.5743061480 .9441259070 .6082940 Income -0.135455821 $0.207910355-0.6515107$
Dependent -0.867295066 0.442612728-1.9594897
Ownrent -0.171289519 0.846023074-0.2024644
Curadd 0.0012400730 .0046332450 .2676467
Majorcard 1.3229852731 .0948822891 .2083356

(Dispersion Parameter for Binomial family taken to be 1)
Null Deviance: 104.3487 on 220 degrees of freedom
Residual Deviance: 73.87756 on 211 degrees of freedom
Number of Fisher Scoring Iterations: 9

Second Step: we build a Logistic Additive model to check the

 nonlinear part of each predictor.Df Npar Df Npar Chisq P(Chi)
(Intercept) 1
$\begin{array}{llll}\mathrm{s} \text { (Major) } 1 & 0.9 & 0.02540 & 0.8247796\end{array}$
$\begin{array}{llll}\mathrm{s} \text { (Activecard) } 1 & 2.9 & 5.336930 .1402896\end{array}$
$\begin{array}{llll}\mathrm{s} \text { (Age) } & 1 & 3.0 & 11.12546 \mathbf{0 . 0 1 0 7 1 1 9}\end{array}$
Selfempl 1
s(Income) 1 $2.9 \quad 3.882960 .2610870$
$\mathrm{s}($ Dependent) $111.9 \quad 0.231800 .8677210$
Ownrent 1
s (Curadd) $1 \quad 3.0 \quad 1.463280 .6842343$
Majorcard 1

Null Deviance: 104.3487 on 220 degrees of freedom
Residual Deviance: $\mathbf{4 7 . 4 4 6 3 1}$ on 196.5519 degrees of freedom
Number of Local Scoring Iterations: 16
DF for Terms and Chi-squares for Nonparametric Effects

Third Step: we choose the important factors to fit another model with linear part of Major and Activecard, and nonlinear of Age.

Df Npar Df Npar Chisq $\quad \mathrm{P}($ Chi)
(Intercept) 1
s (Major) $1 \quad 0.8 \quad 0.021610 .8316526$
s (Activecard) $1 \quad 2.9 \quad 4.153720 .2382494$
s (Age) $1 \quad 2.8 \quad 12.146540 .0058192$

Null Deviance: 104.3487 on 220 degrees of freedom
Residual Deviance: 64.12138 on 210.3879 degrees of freedom
Number of Local Scoring Iterations: 16
DF for Terms and Chi-squares for Nonparametric Effects

Figure: The partial fits for the ALM

Fourth Step: we compare the two models, one is the logistic additive model with all the variables and the other with only

Major, Activecard and Age.

```
Response: Approval
    Terms
1s(Major) + s(Activecard) + s(Age)
2 s(Major) + s(Activecard) + s(Age) + Selfempl +
s(Income) + s(Dependent) + Ownrent + s(Curadd) + Majorcard
Resid. Df Resid. Dev
1210.3879 64.12137
2 196.5519 47.44631
                        Test Df
1
2 +Selfempl+s(Income)+s(Dependent)+Ownrent+s(Curadd)+Majorcard 13.83607
    Deviance Pr(Chi)
1
216.675070.2637644
```

Fifth Step: Since the effects of Major and Activecard on the response are linear, and Age is nonlinear, and some quadratic, we build a model with a second degree polynomial for Age, and linear for Major and Activecard.

	Value Std. Error	
t value		
(Intercept)	-2.43028340	0.38150902
-6.3701860		
Major	-2.15570628	1.03787786
-2.0770327		
Activecard	0.071136050 .03586683	1.9833378
poly(Age, 2)1	3.77684780	3.67773677
poly(Age, 2)2	3.026940785263 .16378516	0.9706049

(Dispersion Parameter for Binomial family taken to be 1)
Null Deviance: 104.3487 on 220 degrees of freedom
Residual Deviance: 82.47548 on 216 degrees of freedom
Number of Fisher Scoring Iterations: 9 that the logistic additive model is much better than the linear model.

```
                            Terms Resid. Df Resid. Dev Test Df
1 Major + Activecard + poly(Age, 2) 216.0000 82.47548
2s(Major) + s(Activecard) + s(Age) 210.3879 64.12137 1 vs. 2
        5.612069
    Deviance Pr(Chi)
1
218.354110.00407996
```


Predicting the Logistic Additive Model

The overall training error is 0.0167

The overall testing error is .00968 .

Statistical Classifiers Support Vector Machine

- Support vector machines (SVMs) are a new generation of learning system. It is based on strong mathematical fundations (the statistical learning theory developed by Vladimir Vapnik since the 70's) and results in simple yet very powerful algorithms
- Support vector machine uses theories from optimization and statistical theory and combines these two in support vector machine.

C-classification

- For this type of SVM, training involves the minimization of the error function:

$$
\frac{1}{2} w^{\tau} w+C \sum_{i=1}^{N} \xi_{i}
$$

- subject to the constraints:

$$
y_{i}\left(w^{\top} \phi\left(x_{i}\right)+b \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0, i=1, \ldots, N\right.
$$

- where C is the capacity constant, w is the vector of coefficients, b a constant and these are parameters for handling nonseparable data (inputs). The index i labels the N training cases. Note that it is the class label and xi's are the independent variables. The kernel is used to transform data from the input (independent) to the feature space. It should be noted that the larger the C, the more the error is penalized. Thus, C should be chosen with care to avoid over fitting.

Model summary

The parameters are used in the model
Gamma =0.1, C=1, error $=.1044$
Gamma=0.125, C=16, error=. 0923

Since the smaller the C, the less the error is penalized, we would like to use
Gamma $=0.1, \mathrm{C}=1$, error $=.1044$

Test result

Gamma $=0.1$ $\mathrm{C}=1$	Training Data	Testing Data
Error	0.1044	0.1241

Conclusion

	Classification Tree	ALM	SVM
Training Error Rate	0.01444	0.0167	0.1044
Testing Error Rate	0.01909	0.00968	0.1241

Table: Comparison of training error rate and testing error rate of Three Methods

