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Data Source and Description

UCI Machine Learning Database
National Institute of Diabetes and 
Digestive and Kidney Diseases 
Diabetes of Pima Indian Women
768 cases

268 positive for diabetes (1)
500 negative for diabetes (0)
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Who are Pima Indians?
Gila River Indian 
Community in 
Southern Arizona
Within community 
marriage 2000+ yrs
Volunteer for 
research studies
Many Pima Indian 
women are diabetic
NIH conducts 
genetic research
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Explanatory Variables

1. “npreg”—Number of times pregnant
2. “glu”—Plasma glucose concentration 
3. “bp”—Diastolic blood pressure (mm Hg)  
4. “skin”—Triceps skin fold thickness (mm)   
5. “insu”—2-Hour serum insulin (mu U/ml)
6. “bmi”—Body mass index (kg/m^2)  
7. “ped”—Diabetes pedigree function  
8. “age”—Age (years).
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Explanatory variables
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Missing Value

0.01432311bmi

0.486979374insu

0.295573227skin

0.04557335bp

0.0078136glu

% missingno. missingvariable

Nearest neighbor imputation
Euclidian distance measure
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After Imputation
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Correlation between Explanatory 
Variable before and after Imputation
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Diabetes explained
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Classification Tree Method
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A classification tree classify input space    into classesχ

At node m, the splits are of the form        versus mx t< mx t>

Suppose there are K classes and the probability 
distribution of the tree is , 1.....mjp j K=
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We define the entropy of the tree at node m by: 

21mj mk mk
j k k

p p p
≠

= −∑ ∑

This is the impurity measure of this node. 

mkp can be estimated by ( )1ˆ
i m

mk m
x Rm

p I x k
N ∈

= =∑

At each node, we choose the split that most 
reduces the average impurity. 
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The tree construction continues until the number of 
cases reaching each leaf is smaller than 10 or the 
entropy of each leave is less than 1% of that of the 
root. 



15

To prevent overfit, we introduce the cost-complexity 
pruning of the tree. 

mRlet denote the entropy of the tree. The size of the 
tree is the number of leaves. 

The complexity measure is then: 

R R sizeα α= +
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α is called complexity parameter (cp)    

Thus we can find the optimal trees by a sequence of 
snip operations on the current tree as we increase 
the   .α

We use 10 time cross validation to choose the 
degree of pruning. We can find the cross-validation 
error versus    on the validation set. We look for the  
value that minimizes the error. 

α
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R Algorithm
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Step 1: Randomly select 200 obs. from the 
data set as the training set

Step 2: Fit a classification tree model to the 
training set

Step 3: Calculate the training error and testing 

error of the model 

Step 4: Repeat above steps 10 times
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Detail for step 2

rpart(class~v1+v2+v3+v4+v5+v6+v7+v8,diabetes.train,parms=information)
printcp(tree)

CP nsplit rel error xerror xstd
1 0.230067 0 1 1.00729 0.065959
2 0.080424 1 0.76993 0.90268 0.0874
3 0.063554 2 0.68951 0.93321 0.091911
4 0.052181 3 0.62595 0.95973 0.095838
5 0.03485 4 0.57377 0.96028 0.101262
6 0.027123 6 0.50407 0.99911 0.108026
7 0.011871 9 0.4227 1.02195 0.109469
8 0.01 11 0.39896 1.02209 0.109403
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plot(tree, uniform=FALSE, compress=F,minbranch=3,margin=0.14)
text(tree,digits=3,use.n=T)

|v2< 161.5

v8< 30.5

v2< 128.5

v3>=63

v7< 0.506

v3>=72

v6< 27.2

v2< 103.5

v1>=3.5

v3>=83

v7< 0.5275

0
n=53

0.0455
n=22

0.375
n=8

0.0769
n=13

0.714
n=7

0.0526
n=19

0.143
n=14

0.222
n=9

0.429
n=14

0.909
n=11

0.875
n=8

0.909
n=22
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|v2< 161.5

0.213
n=178

0.909
n=22

tree.pruned<-prune(tree,cp=0.14)
plot(tree.pruned, uniform=FALSE, compress=F,minbranch=3,margin=0.1)
text(tree.pruned,digits=3,use.n=T)
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Next, we obtained the predicted probablity of getting diabetes for each 
observation in the training and testing data.
If the probability > 0.5, then the predicted class is 1.

The training error rate is: # of missclassification/200
The testing error rate is: # of missclassification/568
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Results
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The 10 trees for the 10 repeats
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|V2< 142
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|V2< 110.5
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0.283270.290700.260280.255550.26772Testing Error

0.209280.159360.259200.245760.15994Training Error

Tree 5Tree 4Tree 3Tree 2Tree 1Error Rate

Testing Error

Training Error

Error Rate

0.28868

0.22080

Tree 6

0.26231

0.22080

Tree 7

0.27989

0.17088

Tree 8

0.25690

0.14496

Tree 9

0.24676

0.20544

Tree 10
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Logistic Regression

Suppose that    (i=1,…,n) are n independent B(1,  ) 
RVs. We let

where    (i=1,…,n) is some explanatory variable.
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Logistic Regression

The model is equivalent to fitting ~ B(1,    ), 
where 

This is a generalized linear model for binomial 
data with a logit link function and            . We 
can fit using IWLS (or Fisher scoring)
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Logistic Regression

Implementation:

There are totally 768 observations. We randomly 
select 200 observations for the training set and 
put the remaining 568 observations into the 
testing set. We repeat the random split 10 times 
and implement the classification on each split 
for training error and testing error. Finally we 
calculate the mean and std. for those errors. 



35

Logistic Regression
Model Selection:
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Logistic Regression
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Logistic Regression
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Logistic Regression
—Our Final Model

glm(formula = response ~ npreg + glu + bmi + ped, family = 
binomial)
Null deviance: 268.37  on 199  degrees of freedom
Residual deviance: 182.90  on 195  degrees of freedom
AIC: 192.90
Number of Fisher Scoring iterations: 5

0.0013503.2060.5946211.906364ped

0.0021203.0730.0303520.09328bmi

0.0000005.5360.0073440.040658glu

0.0158602.4120.0523230.126211npreg

0.000000-6.6761.500661-10.0177(Intercept)

Pr(>|z|)z valueStd. ErrorEstimateCoefficient
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Logistic Regression

0.04380.2440.23390.23050.24810.23930.20750.36440.22170.23390.22380.2339Testing

0.0280.2290.240.22080.18050.20740.28030.2150.240.24960.24580.2093Trainin
g

Std.Ave.10987654321Error
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Logistic Regression

Error Variation through Time
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Support Vector Machine

Our training data consists of N pairs                           
…,             , with             and                  . Define 
a hyper plane by

where    is a unit vector: ||   ||=1. β

})(:{ 0ββ += Txxfx

β

),,( 11 yx ),,( 22 yx
),( NN yx p

ix ℜ∈ }1,1{−∈iy
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Support Vector Machine

A classification rule induced by f(x) is :

For separable case, the hyperplane that creates the 
biggest margin between the training points for 
class -1 and 1 is the following optimization 
problem:

subject to

][)( 0ββ += TxsignxG

Cmax
1||||,, 0 =βββ

NiCxy T
ii ,......,1,)( 0 =≥+ ββ



43

Support Vector Machine

which is equivalent to
subject to 

For non-separable case, we still maximize ||C||, 
but allow for some points to be on the wrong 
side of the margin. Define the slack variables 

. The support vector classifier is:
subject to

constant 

||||min
0,

β
ββ

Nixy T
ii ,......,1,1)( 0 =≥+ ββ

||||min β ∑ ≤≥∀−≥+ iii
T
ii ixy ξξξββ ,0,1)( 0

)......,,( ,21 Nξξξξ =
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Support Vector Machine

Computationally, it is convenient to be re-
expressed in the equivalent form

subject to
which is equivalent to the optimization problem:

with

∑
=

+
N

i
i

1
||||

2
1min ξγβ

0,1)( 0 ≥∀−≥+ ii
T
ii ixy ξξββ
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i
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2

,
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βλ
ββ

)2/(1 γλ =
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Support Vector Machine

Implementation:

For simplicity, we implement linear support vector 
machine without standardization of the inputs. We do 
not conduct model selection for SVM. We used a grid 
search to choose the tuning parameter C. There are 20 
values to choose for C and the 20 values are 
0.00125*2^i; i=0, 1, ..., 19.

Therefore, we do not fully take advantage of the predicting 
potential of the linear support vector machine. 
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Support Vector Machine

0.00940.2310.2250.2340.2480.2360.2110.2340.2290.2340.2310.227Testing

0.0290.2210.2250.20.180.190.280.20.230.2350.2350.23Trainin
g

Std.Ave.10987654321Error
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Support Vector Machine

Error Variation through Time
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Relationship between LR & SVM

Support 
Vector 
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Relationship between LR & SVM

Linear logistic regression uses  

to approximate:

)|1(
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Relationship between LR & SVM

while linear support vector machine uses 
=sign[ ] 

to estimate

^
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Relationship between LR & SVM

If we use 0-1 loss for misclassification in 
standard situation, the Bayes rule 
minimizing the expected loss is:
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Relationship between LR & SVM

In logistic regression, we use MLE, which 
is consistent and asymptotically efficient. 
If we choose logit=0 or p=0.5 as the 
threshold, the result will converge to the 
Bayes rule asymptotically.
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Relationship between LR & SVM

According to Lin(1999), if the reproducing 
kernel Hilbert space is rich enough, the 
solution to the non-linear support vector 
machine approaches the Bayes rule as 
the sample size tends to infinity. Hence, 
we can not guarantee that linear support vector 
machine (use linear kernel) is a good 
approximation of the Bayes rule under the 
standard situation.
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Relationship between LR & SVM

In non-standard situation, the Bayes rule 
minimizing the expectet loss becomes:

In this scenario, all we should do to logistic 
regression is to simply change the threshold of 
the classification problem and all the 
conclusions about logistic regression hold in 
this situation. 
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Relationship between LR & SVM

While for support vector machine, we have to modify the 
loss function and redo the quadratic programming 
procedure to obtain the estimate of the minimizing 
function. In this non-standard situation, the loss 
function is changed to:

where  and                               . The 
penalty term remains unchanged. The solution to this 
regularization problem also tends to the Bayes rule 
under certain conditions (see Lin (2002) Support Vector 
Machines for Classification in Nonstandard Situation).

]))(1[()(
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=
−∑ ii

N

i
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N
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sπ +π
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Relationship between LR & SVM

The reason why we have to go through all the steps for 
SVM is that SVM does not give the whole picture of 
probability. We loss most of the information when the 
estimated boundary approaches the step function of the 
Bayes rule [For linear support vector machine we can 
retrieve the probability under some conditions (See 
John Platt (1999) Probalistic Outputs for Support vector 
machines and comparison to Regularized Likelihood 
Method)}
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Summary of the three methods

0.0090.2310.2250.2340.2480.2360.2110.2340.2290.2340.2310.227SVM-
Testing

0.0290.2210.2250.2000.1800.1900.2800.2000.2300.2350.2350.230SVM-
Training

0.0150.2690.2470.2570.2800.2620.2890.2830.2910.2600.2560.268CT-Testing

0.0390.2000.2050.1450.1710.2210.2210.2090.1590.2590.2460.160CT-
Training

0.0440.2440.2340.2310.2480.2390.2080.3640.2220.2340.2240.234LR-Testing

0.0280.2290.2400.2210.1810.2070.2800.2150.2400.2500.2460.209LR-
Training

Std.Ave.10987654321Error
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Summary of the three methods

Error Variation Through Times
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