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1 Introduction

Facial image analysis and recognition has been gaining great attentions and
witnessing significant advances during recent years. Ranging from static
photo matching in different kinds of authorized licenses to dynamic analy-
sis of surveillance video images, its successful application is not only due to
commercialization and law enforcement, but also a result of the availabil-
ity of reliable methodologies. In this report, feature-based and appearance-
based, will be introduced with our concentration on the latter. Public face
databases, FERET and JAFFE face database are used to analyze several
subspace methods in face identity recognition as well as facial expression
analysis, which includes PCA, ICA, LDA and their kernel versions.

1.1 Feature-based Approach

Feature-based recognition methods denote those approaches that are built
on visual face characteristics, to name a few geometrical measurements of
mouth extremities distance and chin shape [10, 7]. Based on these features,
a model can be obtained to present faces, to which the face features in tested
images would be matched to obtain their identity. Although psychologically
sounding and insensitive to illumination and view-point variation, it severely
suffers from an unreliable measurement and extraction of face features.

1.2 Appearance-based Approach

Unlike feature-based method, appearance-based technology directly uses the
high dimensional image intensity feature(or its filter bank output). It is at-
tractive in that the model of each class is directly defined by the selection of
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the sample images of that object, without the need to create precise geometri-
cal or algebraic representations. Significant successful applications especially
in face recognition area in recent years can be found in [27, 28, 3, 12].

Generally speaking, a training process is designed to find a mapping func-
tion which projects the image data to a lower dimension space (subspace),
which makes it possible to compare and match tested faces to the trained
ones. The reason will be made clear in the following.

As a result of using original image space, the length of feature vector
equals the number of pixels in one image, which is in general very large (e.g.
4800 in our case). To make it worse, the curse of dimensionality is extremely
severe for classification problem. In the pattern recognition community, it
is quite a common practice to use a minimum number of independent sam-
ples equal to ten times the number of classes(ie, face identity number) by
the number of feature dimensions. To this end, efficient feature extraction
methods are required to find a low-dimensional subspace that is capable of
explaining the original data. Linear subspace methods are extensively used
in appearance-based recognition, among which Principal Component Anal-
ysis (PCA) [27, 28], Independent Component Analysis (ICA) [2] and Linear
Discriminate Analysis (LDA) [3, 12] are the three most popular ones. How-
ever, all these subspace techniques are linear in nature, which is inadequate
to describe nonlinearities inherent in the data. Recently, kernel sub-space
methods, such as Kernel-PCA (KPCA), Kernel ICA (KICA) and Kernel
LDA (KLDA), receive more attentions in pattern recognition community
in that they are capable of extracting nonlinear features by mapping input
space to some higher dimensional spaces. By using so-call ”kernel trick”, the
nonlinear subspace can be implicitly obtained without the needs to explicitly
compute the mapping function. Kernel methods find wide applications in
clustering [8], density estimation [15] and image de-noising [22].

With the availability of above-mentioned subspace methods, it is natural
to compare their pros and cons, as is one of the purposes of this report.
Interested readers are encouraged to refer to other resources [10, 18, 19, 29].
Draper et al[10] compares PCA and ICA in the context of a baseline face
recognition system, and showed that their performance are depending on the
task, ICA algorithm and subspace metric, and comparable overall. In [29],
the authors showed that KPCA outperforms PCA in face recognition. Liu
et al [18] compared KLDA and KPCA in face recognition and demonstrated
that the KLDA achieves higher recognition rate than KPCA. In [19], KPCA
is combined with Gabor-based representations for face recognition. In this
contribution, the KPCA is extended to include fractional power polynomial
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kernel 1.

1.3 Facial Expression Analysis

Though subspace methods have been largely used in facial identity recog-
nition, there is relatively less literature in subspace-based facial expression
analysis. Facial expression recognition presents a natural and challenging
way for human-machine interaction(HCI), and this area has been receiving
more and more attentions. In general, facial expression can be identified ei-
ther through face muscle’s motions that are extracted from image sequence
or with the aid of facial feature detection in a single image. For the latter
methods, previous work included, while are not limited to, principle com-
ponent analysis as shown in [23] and Gabor wavelets coding in [20], which
used the same face image database as to be used in our study. In [20],
a multi-orientation, multi-resolution set of Gabor filters were used to code
each image. Based on this representation, similarity space method was de-
clared to be feasible in rating each face image by the corresponding expression
categories.

1.4 Overview of This report

we plan to give a comprehensive study on different subspace methods for
identity recognition and facial expression recognition. More specifically, we
will focus on studying the performance of PCA, ICA, LDA as well as their
kernel versions. To this end, we will experiment them on FERET database for
facial identity recognition under pose variations, and on JAFFE database for
facial expression recognition. The rest of this report is organized as follows:
In section 2 and section 3, we give a review on subspace methods, especially
focusing on ”kernel” versions. Facial identity and expression problems will
be discussed in section 4. Description of the databases and experimental
results will be presented in section 5, and Concluding remarks will be given
in the final section.

2 Linear Subspace Analysis

PCA, ICA and LDA are three of the most popular linear subspace methods
and have been largely used in face recognition applications [27, 28, 3, 12, 2].

1A fractional power polynomial kernel is defined by k(x, y) = (1+ < x, y >)d, where
0 < d < 1.
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2.1 Principal Components Analysis

PCA finds the optimal liner projection between the original feature space
and the low-dimensional subspace with respect to the mean-square error of
the Gaussian that represents the data. To accomplish this, PCA uses the
first and central moments of the data; i.e., the sample mean µ and the sample
covariance matrix ΣX . Let X = {x1, x2, · · · , xn} represent n images of size
m, the sample covariance matrix can be computed by ΣX = 1

n

∑n
i=1(xi −

µ̄) ∗ (xi− µ̄)T , where µ̄ = 1
n

∑n
i=1 xi. Given ΣX , the PCA subspace basis can

be constructed by selecting its first k(usually k ¿ m) leading eigenvectors,
more formally:

ΣXΦ = ΛΦ (1)

The PCA basis is then given by the first k column of Φ.

2.2 Independent Components Analysis

Compared to PCA which de-correlates input data through second-order statis-
tics (covariance), ICA achieves higher-order independence and thus further
reduce redundancies. Basically, it assumes that the input data can be de-
composed into several statistically independent components with different
weights, and estimates both the components and weights based on the above
assumption. In face recognition area, it can be applied in two different
schemes regarding to what kind of input data are used [2, 11]. In the first
scheme, the input data are face image basis obtained from PCA. Based on
the image data, ICA algorithm learns the weights and further recovers in-
dependent basis images. In contrast to scheme 1, scheme 2 uses the PCA
subspace coefficients and gives independent coefficients for image basis in-
stead of independent image basis. As one of the advantages, the image basis
contains more global characteristics and thus allows high-order combinations
of features.

ICA does not have a general close-form solution, but iterative methods
are available. In our experimental results we use the Infomax algorithm
defined in [4]. Based on the observation that independence is maximized if
the entropy is maximized, Infomax thus performs gradient ascent search to
find a local optimal de-mixing matrix W :

W ∗ = argmaxwH(u) (2)

where H(u) = − ∫
f(u)log(f(u))du, and u = W ∗X.
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2.3 Linear Discriminant Analysis

Different from PCA and ICA that are unsupervised learning algorithms, LDA
is a supervised method. LDA selects those basis vectors that maximize the
between-class scatter and minimize the within-class scatter [13]. This can fa-
cilitate the task of feature extraction in some applications. In [3], improved
recognition results over PCA were obtained on Yale face database with illu-
mination variations. Let’s assume that the training set X(as defined above)
contains l classes, and each class has ni samples(

∑l
i=1 ni = n). LDA basis w

is given by maximizing the following function:

J(w) =
wT Sbw

wT Sww
(3)

where Sb and Sw are between-class and within-class scatter matrix respec-
tively:

Sb =

∑l
k=1

∑l
j=1(µk − µj)(µk − µj)

T

l(l − 1)
(4)

Sw =
l∑

k=1

1

ni

ni∑
i=1

(xi
k − µl)(x

i
k − µl)

T (5)

where µl is the sample mean of class l.
Then the LDA basis is given by solving the generalized eigenvalue prob-

lem: SbΦ = SwΛΦ. It is obvious that the rank of Sw is at most l − 1, and
thus the dimension of LDA subspace is also at most l − 1. So the clear dis-
advantage of LDA is that it is only suitable for discriminating data that is
generated from large number of classes.

3 Kernel-Based Subspace Analysis

In this section, we will show the idea of derivations of Kernel Subspaces using
KPCA and KLDA as examples. All the notations are consistent with those
of linear subspaces.

3.1 Kernel Principal Component Analysis

While PCA finds the principal components by solving the eigenvalues of sam-
ple covariance matrix, KPCA will perform the same computation in another
transformed space F , which is related to the input space by a nonlinear map:
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Φ : x ∈ Rm 7→ Φ(x) ∈ F. (6)

It is important to note that transformed feature space F may have infinite
dimensionality, which is prohibitive to deal with. Kernel methods solve this
problem by utilizing the inner product of mapping Φ, instead of directly
working with F . The sample covariance matrix in F is given by:

C̄ =
1

n

n∑
j=1

Φ(xj)Φ(xj)
T (7)

Like PCA, we will solve an eigenvalue problem: λV = C̄V . Clearly, all
eigenvectors in V with non-zero λ lie in the span of Φ(x1), ..., Φ(xn). Thus
this has following two useful consequences . Firstly, there exist coefficients
αi(i = 1, ..., n) such that,

V =
n∑

i=1

αiΦ(xi). (8)

Secondly, the following equation also holds.

λ(Φ(xk), V ) = (Φ(xk), C̄V ) for all k=1,...,n (9)

From Eq.9 and 8

λ

n∑
i=1

αi(Φ(xk), Φ(xi)) =
1

n

n∑
i=1

αi(Φ(xk)
n∑

j=1

Φ(xj))(Φ(xj), Φ(xi)) (10)

By defining a kernel matrix: Kij = 〈Φ(xi), Φ(xj)〉, it follows from Eq. 10
that the problem becomes solving the eigenvalue of kernel matrix K, without
even knowing the mapping Φ.

K

n
αi = λiα

i (11)

where αi denotes the column vector, [αi
1, ..., α

i
n]T .

Let λ1 ≤ λ2 ≤ ... ≤ λn and α1, ..., αn denote the eigenvalues and the
corresponding eigenvectors of K

n
, respectively. We then normalize αi so that

(αi, αi) = 1 for all i = {1, ..., n}. From Eq.8, we get the following equation
for αi:

1 =
n∑

i,j=1

αk
i α

k
j (Φ(xi), Φ(xj)) =

n∑
i,j=1

αk
i α

k
j Kij = (αk, Kαk) = λk(α

k, αk) (12)
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Given a new testing sample x, with its image Φ(x) in F , the projections
onto the eigenvectors V k in F (k = 1, ..., n) is thus computed as:

(V k, Φ(x)) =
n∑

i=1

αk
i (Φ(xi), Φ(x)) (13)

In summary, to perform kernel based PCA (see Fig. 1), the following
steps should be carried out. First compute the matrix Kij = (k(xi, xj))ij.
Next find the eigenvectors and eigenvalues by solving Eq. 11. Then extract
the principal components of a test sample x by Eq.13.

Note that Φ can be an arbitrary nonlinear map into an high-dimensional
space F . By using the kernel representation k(x, y) = (Φ(x), Φ(y)), it allows
us to compute the dot product in F without having to carry out the map.
Typically the following three kernel function are widely used in practice.

• Polynomial Kernel:
k(x, y) = (1 + 〈x, y〉)d (14)

• Gaussian Kernel:

k(x, y) = exp(−‖x− y‖2

2σ2
) (15)

• Sigmoid Kernel:
k(x, y) = tanh(k(x.y) + Θ). (16)

.

3.2 Kernel Linear Discriminant Analysis

The basic idea behind KLDA is to generate a nonlinear discriminant in the
input space by using the kernel trick and LDA(Linear Discriminant Analysis).
First, the input data is nonlinearly mapped into an implicit feature space F ,
Φ : x ∈ Rm 7→ Φ(x) ∈ F . Then try to find a linear transformation in F that
can maximize the between class scatter and minimize the within class scatter
in F . Also one does not need to calculate Φ explicitly but can compute the
inner product in F using kernel function: k(x, y) = 〈Φ(x), Φ(y)〉

The between-class and within-class scatter matrix Sb, Sw in F are defined
as:

Sb =
1

l(l − 1))

l∑
i=1

l∑

j=l

(ui − uj)(ui − uj)
T (17)
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Figure 1: The basic idea of kernel PCA. We perform a linear PCA
in nonlinear high dimensional subspace, just like a PCA in input
space(top),courtesy of [26].

Sw =
1

l

l∑
i=1

1

ni

ni∑
j=1

(Φ(xj)− ui)(Φ(xj)− ui)
T (18)

where ui = 1
ni

∑ni

j=1 Φ(xj) denotes the sample mean of class i in F .
In order to perform KLDA in F, one should maximize the following.

J(w) =
wT Sbw

wT Sww
(19)

Using the same conclusion derived in KPCA that any solution wεF must
lie in the span of all the samples in F , there exists coefficients αi , i = 1, 2...n,
such that

w =
n∑

i=1

αiΦ(xi) (20)

By the above equation , the projection of each class means ui onto w can
be described as:
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wT ui = αT




1
ni

∑ni

j=1 k(x1, xj)
1
ni

∑ni

j=1 k(x2, xj)

. . .
1
ni

∑ni

j=1 k(xn, xj)


 = αT mi (21)

it follows that

wT Sbw = αT Kbα (22)

where Kb = 1
l(l−1)

∑l
i=1

∑l
j=1(mi −mj)(mi −mj)

T , and a similar trans-
formation as in 22, it can be found that

wT Sww = αT Kwα (23)

where Kw = 1
l

∑l
i=1

1
ni

∑ni

j=1(ζ(xj)−mi)(ζ(xj)−mi)
T ,

where ζj = (k(x1, xj), k(x2, xj), ..., k(xn, xj))
T .

Thus maximizing Eq.19 is converted to maximizing:

J(α) =
αT Kbα

αT Kwα
(24)

Like LDA, this can be easily solved by finding the eigenvectors of K−1
w Kb,

and the projection of a new sample x onto w in F is given by

(w, Φ(x)) =
n∑

i=1

αik(xi, x) (25)

In practice, K−1
w does not always exist, or has poor rank conditions. This

problem can be addressed using regularization to stabilize Kw:

K
′
w = (Kw + λI)−1 (26)

where λ is a small number, and I is identity matrix.

4 Facial Image Analysis and Recognition

4.1 Facial Image pre-processing

The very first task to perform face recognition is to localize the face(and facial
features) on the images. There exist many algorithms in the literature. Read-
ers can refer to a recent survey [31]. In our report, we use the SVM(support
vector machine) based face detection algorithm described in [17], because
it is capable of robustly detecting both facial region and facial features(see
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an example in Fig.2(a)). It is important to keep in mind that face is 3D
object that is subject to deformations, and these deformations always exist
even when we restrict all the faces to be frontal. In appearance-based face
recognition, the misalignment of facial features in the image, caused by per-
spective projection of deformed 3D face, will obviously give misclassification.
To address the above problem, warping technique is generally used to warp
both training and testing image to shape-free representations through spline
interpolation [18] or optical flow [29], and it is shown that higher recognition
rate can be achieved using this approach [9].

We use a relatively simpler approach. Once the face and those important
facial features have been localized, we will use the differences between the x
and y coordinates of the two eyes, the original image is rotated until obtaining
a frontal view face where both eyes have the same y value; i.e., atan(‖y1 −
y2‖/‖x1 − x2‖), where (x1, y1) and (x2, y2) are the right and left eye image
coordinates. The face is then aligned to fit a final standard 60×80 rectangle.
After warping, the eye centers, the medial line of nose and the center of
mouth will be at the same position for all the faces. Fig.2(a) and Fig.2(b)
show the image rotation and warping process respectively.

4.2 Learning and Identification

Given N training images I = {I1, I2, · · · , IN} already warped, we first learn
the subspace projection matrix Φ, and project the training images onto the
subspace by Îi = Φ ∗ Ii(i the index of training image). In Fig.3, we visu-
alize the PCA basis and ICA basis that are learned from FERET database
respectively.

In this report, we will use Nearest Neighbor(NN) to do recognition, that
is, a test T is first projected to the subspace by T̂i = Φ∗T and then classified
by assigning to it the class label of the closest training sample. Fig. 4
illustrates the idea of subspace recognition using NN rule. More formally,

s = argmini‖Îi − T̂‖2 , (27)

and determine the class label, of Is.

5 Database and Experimental Results

In this section, we will show the performance of the above different subspace
techniques in face identity recognition and facial expression recognition. For
face identity recognition, we focus on the recognition of pose-variant faces.
To this end, we use 195 subjects from FERET(Face Recognition Technology)
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(a)

(b)

Figure 2: (a) After face and facial feature detection, we rotate the
face so that the centers of the two eyes have the same y coordinates.
(b) Warp all the faces in the database to a standard 60 × 80 array
so that the facial features are at the same locations.



5 DATABASE AND EXPERIMENTAL RESULTS 12

(a)

(b)

Figure 3: (a) Eigen-faces(PCA basis).(b) ICA basis.

(a) (b)

Figure 4: (a),(b) illustrate facial identity recognition and expression
recognition in subspace using nearest neighbor rule, respectively.
The image in the box is the testing image.

face database [25]. Each subject contains 9 samples with different poses. For
facial expression recognition, we will use JAFFE(Japanese Female Facial Ex-
pression) database. The database contains 213 images of 7 facial expressions.
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5.1 Pose Variant Face Recognition

The face images in FERET database display diversity across age, gender and
ethnicity, and contain images taken under varying poses, illumination condi-
tions, facial expression and time. FERET is now the standard for evaluating
face recognition systems. In our experiment, we use faces from 195 subjects,
each subject gives 9 images with head orientation ranging from −60o to 60o.
Fig.5 shows sample images of a subject after cropping and warping process
as detailed in Section.4.1.

Figure 5: The images of a subject in Feret database.

To evaluate the performance, We test all the algorithms by a leave-one-
pose-out procedure. Each time, we use images of eight poses for training and
the one left for testing. The recognition rate is thus the average of those
procedures. We will show the experiment results we have got so far. Fig.6
shows the results achieved by using PCA, ICA and LDA.

PCA ICA LDA
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Figure 6: Recognition rates of PCA, ICA and LDA.

In Fig.7, we show the recognition rate obtained using KPCA with poly-
nomial kernels. We test the performance using four different degrees of
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polynomial: d=2, d=3, d=0.5, d=0.8. Our results are coherent with the
observations in [20] that fractional power polynomial(0 < d < 1) is a good
choice in some scenarios. We also demonstrate the performance of KLDA
using different degrees of polynomial kernels in Fig.8. While in the KLDA
case, the fractional power kernel does not show superiority over integer power
ones. Comparing with other subspace representation, KLDA gives the best
recognition performance.

d=0.5 d=0.8 d=2 d=3
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n 
Ra

te

Figure 7: Recognition rates of KPCA using different degrees of poly-
nomial kernels.

5.2 Facial Expression Recognition

The JAFFE database contains 213 images of neutral and 6 basic facial ex-
pressions(happiness, sadness, surprise, anger, disgust, fear). These images
are from 10 Japanese female. Example images of these expressions are shown
as Fig. 9.

Excluding the images with neutral expression, we have 168 images, which
consist of 6 expressions with 28 images each emotion. To test the performance
of the algorithms, we use 14 images of each expression, which gives a total
of 84 images, for training, and the rest for testing. Since the way to pose a
expression varies significantly across different individuals, it is even a diffi-
cult problem for human to judge a given expression. Therefore, unlike the
procedure used in recognition of identity, it is generally more meaningful to
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d=0.5 d=0.8 d=2 d=3
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Figure 8: Recognition rates of KLDA using different degrees of poly-
nomial kernels.

Figure 9: The images of a subject in JAFFE database.

rate a given image according to six expressions, instead of simply assigning
it a “hard” class label. In JAFFE database, each image has been rated on 6
emotion adjectives by 60 Japanese subjects. Thus, each images has six scores
ranging from 1 − 5 that represent its similarity to each expression(refer to
Fig.10).

In order to evaluate the algorithms, we compute the correlation between
the similarity scores to each class calculated by the algorithms and the scores
rated by human. Experimental results using PCA and ICA for recognizing
six expressions are given in Fig.11(LDA is not considered because, as we
described in section.2, there are only 6 classes here, that is, only up to six
features are useful). In average, ICA works well for expression analysis with
a correlation score of about 93%, while PCA can achieve 89%.
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Figure 10: This figure illustrates the rating of a given face by human,
the ground-truth expression of the face in the figure is disgust.
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Figure 11: This figure shows the expression recognition results using
PCA and ICA, which are measured by the correlation scores with
the human rating.

In Fig.12, we also show the results using KPCA with polynomial kernels.
We test the performance using four different degrees of polynomial: d=2,
d=3, d=0.5, d=0.8. We find that the results are quite similar, with a average
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correlation score about 88%− 89%.
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Figure 12: This figure shows the expression recognition results using
KPCA with different degrees of polynomial kernels.

6 Conclusion

In this report, we have studied various subspace methods in identity recog-
nition and facial expression recognition. For identity recognition, we specifi-
cally investigate the generalization performance of subspace methods to pose
variations. FERET face database is used to test all the algorithms using
leave-one-pose-out strategy. Experimental results shows: 1). KLDA using
polynomial kernel gives the best performance. 2). LDA is better than all the
others except KLDA. 3). PCA achieves similar rate as KPCA, but ICA per-
forms the worst. It is straightforward to justify the good performance of LDA
and its kernel version, since it utilizes the class information, and the data is
quite friendly for discriminant analysis(large number of class and samples).
Since ICA seeks to use all the high order statistics, it might cause over-fitting
problem for the data, which in a way explains its low recognition rate. It is
also worthy mentioning that KPCA with polynomial kernels gives the best
results for d=0.5 than others. In fact, the degree of the polynomial means the
order of the statistics we use to fit the data. When d=1, we only use up to
second order statistics, which is equivalent to PCA; when d¿1, we use higher
order statistics like kurtosis, and when d¡1(fractional power), we are actually
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fitting a sub-gaussian distribution, which might best explain the data in our
case. For facial expression problem, we propose to use the correlation be-
tween calculated rating vector and that given by human as the performance
measure, because of the complex nature of expression perception. JAFFE
database is utilized to test the algorithms on rating six basic human expres-
sions. Though ICA is unfavorable in pose-variant identity recognition, it
is demonstrated in the experimental results that ICA shows superiority in
dealing with expressions over all the other algorithms, whose performance
are quite similar. This is because ICA might well capture the statistics of
the image data with expression variations, which is supposed to be much
more complex than that of pose variations.

In summary, kernel methods in feature extraction don’t appear to show
much superiority over other algorithms from our experimental results, though
it is now very popular in the community. Since the good performances are
achieved only by those models that are able to explain the given data set, we
argue that one of the future attempts on kernel methods should be around
how to adaptively select kernels from the data set.
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