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I ntroduction

Methods for accurately classfying segments of images are of growing vauein
many fields. Researchersin the area of computer vision wish to use machine learning to
enable artifidd intdligence platforms to interact with avisudly sensed environment.
Those interested in performing lossy image compression adso have interests in image
segment dassfication. By successfully identifying the contents of an image, varigble
levels of compression may be applied to different portions of theimage. Thismay adso
be extended to implementation in video coding dgorithms.

Exigting work in the field includes research done by Michadl Revow, in the fidd
of hand-written character classification. In his studies, a parametric modd, such asa
spline, would be fit to the curves composing the hand-written characters. The parameters
of the mode fit would then be used as extracted feetures fed into a neural network
classfier [1-5]. Song Chun Zhu has done sgnificant work in segmentation of full
images, usng Markov chain models[6]. By usng aMarkov modd, heisableto jointly
classfy many adjacent segments of theimage. Steve Waterhouse has done work in
applying mixtures of expertsto image classfication [7]. An expert isan dgorithm thet is
trained to recognize a particular object or event within animage. By gpplying multiple
experts to a given image, each expert is able to decompose the portions of the image that
it is able to represent more effectively than any of the other experts.

In this report, we will study the gpplication of avariety of pattern recognition
techniques to the image segment classfication problem. In specific, the challengeisto
independently classify segments extracted from outdoor imagesinto one of m classes.
The data set used in this study, obtained from the Delve [8] web Site, has aso been the
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subject of experiments performed by many other researchers. Radford Ned gpplied the
nearest neighbor classification method to this data set, possibly in the course of the study
discussed in[9]. At one point, unknown parties gpplied CART [10-11] software, a data-
mining tool that autometicaly searches for patterns and relationshipsin highly complex
data. The aforementioned Michael Revow applied a k-nearest neighbor technique, and
Steve Waterhouse also sudied this data set in his Ph.D. thesis[7]. Unfortunately, results
from none of these sudies were readily available. While ligings of the results were
available on the Delve web Site, no documentation to enable interpretation of these
numbers was provided.

The next section of this report will detail the data set under consideration. Section
[11 will briefly describe each dassfication agorithm gpplied and will present the results

from each. Findly, Section IV will summarize our observations and conclusions.

. Data Set

CarlaBrodley origindly created the natura image segment data set during her
time with the Vision Group at the University of Massachusettsin 1990. The image
segments were extracted from seven outdoor images. Each segment is afull-color nine-
pixe square. Each of the image segmentsfitsinto one of seven classes. cement,
brickface, foliage, grass, path, sky, or window. There were 210 samples, 30 of each
class, partitioned for training, and 2100 samples, 300 of each class, were set asde for
tegting.

From each image segment, 16 continuoudy valued festures were extracted, and it
isthese extracted features that are contained in the data set. The first two festures, short-

line-density-5 and short-line-density-2, are continuoudy vaued over the range [0,1] and
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are defined to be the low and high contrast line counts, respectively. The next four

features, vedge-mean, vedge-sd, hedge-mean and hedge-sd, are continuoudy vaued over
[0,¥) and specify the mean and stlandard deviation of the horizonta and verticad

contrasts. The intensity-mean, continuoudy valued over [0,¥) isthe average pixd

intengity of the segment, defined as the mean of the next three atributes. The rawred-

mean (R), rawblue-mean (B), and rawgreen-mean (G), defined over [0,¥), are the
average red, blue, and green over the segment. Then, the exred-mean, exblue-mean, and
exgreen-mean, defined over (-¥ ,¥), arethe excessred (2R - (G + B)), excessblue (2B —
(G +R)), and excess green (2G — (R + B)). Findly, the value-mean, saturation-mean,
and hue-mean are a non-linear three-dimensond transformation of R, G, and B.

Thefirg gep in this sudy wasto perform a multiple discriminant andysis on the
features of the training data. Following the development in section 3.8.3 of [16], we
determined the within-class scatter matrix Sy and the between-class scatter matrix Se.
Thisdlows us to pose and solve the generdized el genvaue problem

Sw =1, Sw, &
where w; are the generalized eigenvectors and | ; are the generdlized eigenvdues. The
magnitude of the largest eigenvaue was 2.18 followed by 0.0055 as the next largest.
Thisimpliesthat alarge mgority of the differences between image classesis contained in
the features indicated by the eigenvector w; corresponding to | 1 = 2.18. Theindicated
attributes, meaning those features whose corresponding eementsin w; have magnitudes
ggnificantly greater than zero, were intensity-mean, rawred-mean, rawblue-mean,
rawgreen-mean, exred-mean, exblue-mean, and exgreen-mean. These features will be

hereafter referred to asthe MDA features. Given that the intensity and the excess color



vaues are defined as linear combinations of R, G, and B, we may therefore conclude that

average pixed color isthe greatest discriminating factor between image segment classes.

I1l. Classification Methods Applied

Severd different classfication methods were gpplied to the image segments.
These classfiersincluded Bayes decison, k-nearest neighbor, probabilistic neura
networks [12,13], minimum mean-squared error (MSE) [16], Lagrangian support vector
machines (SVM) [14], and m-class SVM [15] For each of these approaches, the
classfication dgorithm was firg trained using the training data, and the agorithm was
then applied to the testing data. Also, for each of these gpproaches, training and testing

was done with the full set of image features and with just the MDA features.

A. Bayes Decision

The Bayes decision classifier is proven to give the best performance of any
classifier, provided that an accurate definition of each class's posterior probability densty
function (PDF) isavailable. Asandyticd expressonsfor the PDFs of the image segment
feature data is not available, we assumed that the festures of each image class were

jointly Gaussan. Therefore, in the training phase of this experiment, we computed a

sample mean for each class
1 o
m =— ax @
: Njiiclassj

and a sample covariance matrix for each class

Kj Ni cé( )(Xi - mj)T (3)
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where N; = 30 is the number of ssmplesin classj. We then removed rows and columns of

each K; until they became non-singular. The posterior PDF of classj may then be written

as
1 é 1 ) u
pj(X)=W9<pg E(X' m, ) K (- m, )H’ (4)
and thus the Bayes decison classfier is
D, =argmax pj(xi)' ©)

L7

This classifier, as described above, was applied to the full set of feature data and
to the reduced set of MDA features. The results of these experiments are shown in the
confusion matrices of Table 1 for the full sat of features and Table 2 for the MDA
features. The classfier using the full set of festures achieved a probability of correct
classfication (Pcc) of 0.844, and the classifier usng the MDA features achieved a Pcc of
0.845. Thisindicates that the MDA features capture al of the information relevant to the
Bayes decison classfier, with an assumed Gaussan PDF, and may even offer adight
reduction in noise, by discarding features that are not informative. In both cases, the
cement, foliage, path, and window were the most difficult classes to recognize.

Table 1. Confusion matrix using Bayes decision on the full featur e set.

Probability of Decision

Classification Cement |Brickface| Foliage Grass Path Sky Window
Cement 0.76 0.00 0.04 0.00 0.13 0.00 0.07
Brickface 0.00 0.98 0.00 0.00 0.01 0.00 0.01
Foliage 0.05 0.00 0.58 0.00 0.00 0.00 0.37

Truth |[Grass 0.00 0.00 0.00 0.99 0.00 0.00 0.01
Path 0.13 0.00 0.01 0.00 0.86 0.00 0.01
Sky 0.01 0.00 0.00 0.00 0.00 0.99 0.00




Table 2: Confusion matrix using Bayes decision on the MDA features.

Probability of Decision

Classification Cement [Brickface| Foliage Grass Path Sky Window
Cement 0.70 0.00 0.01 0.00 0.20 0.00 0.09
Brickface 0.01 0.98 0.00 0.00 0.00 0.00 0.01
Foliage 0.02 0.00 0.62 0.00 0.00 0.00 0.36

Truth |Grass 0.00 0.00 0.01 0.98 0.00 0.00 0.00
Path 0.18 0.00 0.03 0.00 0.79 0.00 0.00
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Window 0.10 0.00 0.04 0.00 0.01 0.00 0.86

B. k-Nearest Neighbor

The k-nearest neighbor classifier attempts to estimate optimal decision boundaries
by finding the k training samples nearest to the test sample, and then classfying the test
sample by mgority vote of the k training samples. 1n our experiments, the distance

between samples was measured using an unweighted Euclidean norm

d(x y)=y(x- y)'(x-y), )
Then, given the k training samples closest to the test sample X, the decision rule may be

written as

D, =argmax Freq {x,,X, ... X,} ©)

17
where Freq; measures the number of occurrences of classj inthe set {Xy, X2, ..., Xi}. TO
vary the tightness of the classifier’ sfit to the training data, we varied the number of
nearest neighbors k from oneto eight. The experimenta results, achieved by varying k,
are shown in Figure 1 for the full feature set and the MDA features. It can beseenin
Figure 1 that the best performance is achieved with k = 1, the confusion matrices for
which are givenin Tables 3 and 4. The k-nearest neighbor classifier achieved Pcc of
0.854 for the full data set and 0.855 for the MDA features. Asfor the Bayes decision

classfier, the cement, foliage, path, and window were the most difficult to dassfy.
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Figurel: Varyingk in the nearest neighbor classifier variesthetightness of the classifier'sfit
tothetraining data.

Table 3: Confusion matrix using k -nearest neighbor classifier (k=1) on thefull feature set.

Probability of Decision

Classification Cement |Brickface| Foliage Grass Path Sky Window
Cement 0.63 0.01 0.02 0.00 0.27 0.00 0.08
Brickface 0.00 0.99 0.00 0.00 0.00 0.00 0.01
Foliage 0.02 0.00 0.74 0.00 0.02 0.00 0.23

Truth |[Grass 0.01 0.00 0.00 0.99 0.00 0.00 0.00
Path 0.13 0.00 0.01 0.00 0.85 0.00 0.01
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00

Table 4: Confusion matrix usingk -nearest neighbor classifier (k=1) on the M DA features.

Probability of Decision

Classification Cement [Brickface| Foliage Grass Path Sky Window
Cement 0.65 0.00 0.01 0.00 0.28 0.00 0.06
Brickface 0.00 0.99 0.00 0.00 0.00 0.00 0.01
Foliage 0.03 0.00 0.69 0.00 0.02 0.00 0.26

Truth |Grass 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Path 0.14 0.00 0.00 0.00 0.84 0.00 0.02
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Window 0.10 0.01 0.08 0.00 0.00 0.00 0.82

C. Probabilistic Neural Networ k

Similar to the k-nearest neighbor classifier, the probabilistic neural network (PNN)

classfier attempts to estimate optima decision boundaries based on the Euclidean

distance from the test sample to each training sample. The Matlab PNN isaneurd




network in two layers. Thefirst layer computes the distance from the test sample to each
training sample. The second layer linearly combines the distances computed for the
training samples of each class, to produce a posterior probability score for each class. A
compete transfer function then sdects the class with the highest posterior probability.

The Matlab PNN function alows user control of a*“spread” variable, which determines
the tightness of the classifier’ sfit to the training data. The results obtained by varying

this spread varigble from 0 to 5 are shown in Figure 2. The classfier usng the full data

set and a spread of 2.8 achieved a Pcc of 0.846, and the classifier using the MDA festures
and a spread of 0.4 achieved a Pcc of 0.852. These results are shown in the confusion
matrices of Tables5 and 6, and it can be seen that the problematic image classes are

congstent with the previous two classfiers.
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Figure2: Varying the spread in the PNN classifier variesthetightness of the classifier'sfit to
thetraining data.



Table5: Confusion matrix using PNN classifier (spread = 2.8) on the full feature set

Probability of Decision

Classification Cement |Brickface| Foliage Grass Path Sky Window
Cement 0.64 0.01 0.02 0.00 0.26 0.00 0.08
Brickface 0.00 0.99 0.00 0.00 0.00 0.00 0.01
Foliage 0.06 0.00 0.74 0.00 0.02 0.00 0.18

Truth |Grass 0.01 0.00 0.00 0.99 0.00 0.00 0.00
Path 0.14 0.00 0.01 0.00 0.84 0.00 0.01
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00

Table 6: Confusion matrix using PNN classifier (spread = 0.4) on the MDA features.

Probability of Decision

Classification Cement | Brickface| Foliage | Grass Path SKky Window
Cement 0.65 0.00 0.01 0.00 0.28 0.00 0.06
Brickface 0.00 0.99 0.00 0.00 0.00 0.00 0.01 |
Foliage 0.04 0.00 0.69 0.00 0.02 0.00 0.26

Truth |Grass 0.01 0.00 0.00 0.99 0.00 0.00 0.00
Path 0.14 0.00 0.00 0.00 0.84 0.00 0.02
Sky 0.01 0.00 0.00 0.00 0.00 0.99 0.00
Window 0.10 0.01 0.08 0.00 0.00 0.00 0.81

D. Minimum Mean-Squared Error

In a 2-class dassfication problem, the minimum M SE classfier decison may be

expressed as
{1, a'x 30
Di :.|'. T : (8)
12 ax<0
The linear discriminant coefficients a are determined by
. 2 Ty 1T
a=agmin|Ra- b :(R R) R'b (9)

where R contains the set of training festures, such that R; isfeeturej of training samplei.
The vector b is defined such that b is 1, if samplei isfrom class 1, and is—1, if samplei
isfrom cdlass 2. The least squares solution of (9) assumes that sufficient training samples

are available such that R'Ris full rank.
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The minimum M SE classfier may be extended to an m-class problem by smply
determining m-1 linear discriminants. In which case, each classification is handled
sequentidly by the decison rule

for k =1tom-1
_ik, a, 30

ik +1...,m, a'x <0
if Di 1 k,thenk =k+1

(10)

where the order in which the classes are consdered is Sgnificant. One must consider the
clustering of the classes in feature space to decide this order. Classesthat lie on the edge
of the cluster should be dassified firg, thus alowing the discriminant of lowest
complexity. The dlassfier may fit the training data more tightly by projecting the deta
samplesinto different orders of polynomid space. Figure 3 shows the classification
results from varying the projected polynomid order from 1 to 8. The classfier using the
full set of features and projecting into second order polynomia space achieved a Pcc of
0.823, and the classifier using the MDA features and projecting into third order
polynomia space achieved a Pcc of 0.83. The confusion matrices for these results are
givenin Tables 7 and 8, where the typical classes remain problematic. It isimportant to
highlight that the minimum MSE dassifier is designed by minimizing the MSE, which

does not necessarily carry any implications with respect to the probability of correct

classification.
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Figure 3: Varyingthe projected polynomial order in the minimum M SE classifier variesthe
tightness of the classifier'sfit to thetraining data.

Table 7: Confusion matrix using the 2nd order minimum M SE classifier on the full featur e set.

Probability of Decision

Classification Cement |Brickface| Foliage Grass Path Sky Window
Cement 0.50 0.00 0.03 0.00 0.35 0.00 0.12
Brickface 0.00 0.97 0.00 0.00 0.01 0.00 0.02
Foliage 0.01 0.01 0.79 0.00 0.04 0.02 0.13

Truth |[Grass 0.00 0.00 0.00 0.99 0.01 0.00 0.00
Path 0.15 0.00 0.03 0.00 0.81 0.00 0.00
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00

Table 8: Confusion matrix using the 3rd order minimum M SE classifier on the MDA features.

Probability of Decision

Classification Cement [Brickface| Foliage Grass Path Sky Window
Cement 0.52 0.00 0.02 0.00 0.32 0.00 0.13
Brickface 0.00 0.97 0.00 0.00 0.01 0.00 0.02
Foliage 0.02 0.00 0.85 0.01 0.00 0.03 0.08

Truth Grass 0.00 0.00 0.01 0.99 0.00 0.00 0.00
Path 0.16 0.00 0.03 0.00 0.77 0.00 0.04
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Window 0.05 0.00 0.12 0.01 0.00 0.12 0.71

E. Lagrangian Support Vector Machine

Support vector machine classifiers are based on solving a constrained quadratic-

programming problem that yields a maximum-margin separating surface between two

classes. In[14], Mangasarian and Musicant reformul ate the standard SVM programming

problem to dlow the minimization to be performed on an uncongrained and
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differentiable convex function, in a gpace of dimensonality equa to the number of

training samples. 1n gpplication to our m-classimage segment classfication problem, m-

1 Lagrangian SVMswere determined using radia basis functions. The class decison

was then made sequentidly, by considering one class at atime asin (10) for the

minimum MSE classfier. The soread of the radia basis functions were varied from O to
500, in order to control the tightness of the classfier’ sfit to the training data. Figure 4
shows the results obtained by varying this spread for the full data set and the MDA
features. Thefull data set classifier achieved a Pcc of 0.743 with a spread of 400, and the
MDA feature classifier achieved a Pcc of 0.762 with a spread of 120. The confusion
matrices for these results are given in Tables 9 and 10, where again the typica classes

remain problematic.
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Figure4: Varyingthe spread of theradial basisfunctionsin the Lagrangian SVM classifier
variesthetightness of the classifier'sfit to thetraining data.
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Table 9: Confusion matrix using the Lagrangian SVM classifier (spread=400) on the full feature set.

Probability of Decision

Classification Cement | Brickface| Foliage Grass Path Sky Window
Cement 0.19 0.04 0.00 0.00 0.63 0.05 0.08
Brickface 0.02 0.95 0.02 0.00 0.00 0.00 0.01
Foliage 0.04 0.01 0.59 0.00 0.02 0.12 0.21

Truth Grass 0.00 0.01 0.00 0.98 0.00 0.00 0.01
Path 0.04 0.00 0.00 0.00 0.87 0.09 0.00
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00

Table 10: Confusion matrix using the Lagrangian SVM classifier (spread=120) on the MDA features.

Probability of Decision

Classification Cement | Brickfacel Foliage Grass Path Sky Window
Cement 0.19 0.02 0.00 0.00 0.63 0.08 0.08
Brickface 0.02 0.95 0.00 0.00 0.00 0.00 0.02
Foliage 0.04 0.00 0.54 0.00 0.05 0.04 0.32

Truth Grass 0.02 0.00 0.00 0.96 0.00 0.02 0.00
Path 0.03 0.01 0.00 0.00 0.96 0.00 0.00
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Window 0.06 0.00 0.18 0.00 0.02 0.00 0.73

F. m-Class Support Vector Machine

The m-class SVM classifier built by Yi Zhao [15] performs joint m-class pattern

recognition by solving the congtrained quadratic- programming problem necessary for a

maximum-margin separating surface. A radid bass function was used as the kernd for

the SVM, and the variance of this basis function was varied from 10°° to 1072, in order to

control thetightness of the classfier’ sfit to the training data. These results are shown in

Figure 5 for the full feature set and the MDA features. The full fegture set classifier and

the MDA features classifier both achieved their best performance with a variance of 10°3,

achieving probabilities of correct classification of 0.872 and 0.877, respectively. The

confusion matrices for these results are shown in Tables 11 and 12. The cement

remained the mogt difficult class to identify, but the other previoudy problematic classes

did show some improvement. The m-class SVYM classifier achieved the best performance

of dl of the classfiers considered.
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Table 11: Confusion matrix using the m-class SVM classifier (variance=10%) on the full featur e set.

Probability of Decision

Classification Cement | Brickface| Foliage Grass Path Sky Window
Cement 0.63 0.00 0.05 0.00 0.24 0.00 0.09
Brickface 0.00 0.98 0.00 0.00 0.00 0.00 0.02
Foliage 0.01 0.00 0.87 0.00 0.01 0.00 0.11

Truth [Grass 0.00 0.00 0.01 0.99 0.00 0.00 0.00
Path 0.13 0.00 0.05 0.00 0.81 0.00 0.01
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Window 0.04 0.00 0.13 0.00 0.00 0.00 0.82

Table 12: Confusion matrix using them -class SVM classifier (variance=10") on the MDA features.

Probability of Decision

Classification Cement | Brickface| Foliage Grass Path Sky Window
Cement 0.60 0.00 0.00 0.00 0.29 0.00 0.11
Brickface 0.00 0.98 0.00 0.00 0.00 0.00 0.02
Foliage 0.03 0.00 0.82 0.00 0.01 0.00 0.14

Truth |Grass 0.00 0.00 0.00 0.99 0.00 0.00 0.00
Path 0.12 0.00 0.00 0.00 0.87 0.00 0.01
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Window 0.04 0.01 0.07 0.00 0.00 0.00 0.88

V. Conclusions

First, MDA successtully identifies the information rich feaiures of adatasst. This

Based on the results discussed above, the following observation may be made.

conclusion is supported by the fact that the classfiers consdered performed aswell on
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the MDA features asthe full data sets, if not dightly better. Second, as the Bayes
decison classfier did not achieve the best performance, we must conclude one or both of
the following: 1) ajointly Gaussan PDF does not accurately mode the feature data, and
2) the dtatistics computed from the training data were not precise enough. Third, given
that the k-nearest neighbor classifier performed best with k = 1, we may conclude that
there were not sufficient training samples available to accuratdy characterize the fegture
PDFs. Findly, thejoint m-class SVM dassfier sgnificantly outperformed the m-1
sequentia Lagrangian SVM cdlassfiers, indicating the sub-optima nature of ether the

Lagrangian SVM or the sequentid architecture.
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