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I. Introduction 

Methods for accurately classifying segments of images are of growing value in 

many fields.  Researchers in the area of computer vision wish to use machine learning to 

enable artificial intelligence platforms to interact with a visually sensed environment.  

Those interested in performing lossy image compression also have interests in image 

segment classification.  By successfully identifying the contents of an image, variable 

levels of compression may be applied to different portions of the image.  This may also 

be extended to implementation in video coding algorithms. 

Existing work in the field includes research done by Michael Revow, in the field 

of hand-written character classification.  In his studies, a parametric model, such as a 

spline, would be fit to the curves composing the hand-written characters.  The parameters 

of the model fit would then be used as extracted features fed into a neural network 

classifier [1-5].  Song Chun Zhu has done significant work in segmentation of full 

images, using Markov chain models [6].  By using a Markov model, he is able to jointly 

classify many adjacent segments of the image.  Steve Waterhouse has done work in 

applying mixtures of experts to image classification [7].  An expert is an algorithm that is 

trained to recognize a particular object or event within an image.  By applying multiple 

experts to a given image, each expert is able to decompose the portions of the image that 

it is able to represent more effectively than any of the other experts. 

In this report, we will study the application of a variety of pattern recognition 

techniques to the image segment classification problem.  In specific, the challenge is to 

independently classify segments extracted from outdoor images into one of m classes.  

The data set used in this study, obtained from the Delve [8] web site, has also been the 
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subject of experiments performed by many other researchers.  Radford Neal applied the 

nearest neighbor classification method to this data set, possibly in the course of the study 

discussed in [9].  At one point, unknown parties applied CART [10-11] software, a data-

mining tool that automatically searches for patterns and relationships in highly complex 

data.  The aforementioned Michael Revow applied a k-nearest neighbor technique, and 

Steve Waterhouse also studied this data set in his Ph.D. thesis [7].  Unfortunately, results 

from none of these studies were readily available.  While listings of the results were 

available on the Delve web site, no documentation to enable interpretation of these 

numbers was provided. 

The next section of this report will detail the data set under consideration.  Section 

III will briefly describe each classification algorithm applied and will present the results 

from each.  Finally, Section IV will summarize our observations and conclusions. 

II. Data Set 

Carla Brodley originally created the natural image segment data set during her 

time with the Vision Group at the University of Massachusetts in 1990.  The image 

segments were extracted from seven outdoor images.  Each segment is a full-color nine-

pixel square.  Each of the image segments fits into one of seven classes: cement, 

brickface, foliage, grass, path, sky, or window.  There were 210 samples, 30 of each 

class, partitioned for training, and 2100 samples, 300 of each class, were set aside for 

testing. 

From each image segment, 16 continuously valued features were extracted, and it 

is these extracted features that are contained in the data set.  The first two features, short-

line-density-5 and short-line-density-2, are continuously valued over the range [0,1] and 
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are defined to be the low and high contrast line counts, respectively.  The next four 

features, vedge-mean, vedge-sd,  hedge-mean and hedge-sd, are continuously valued over 

[0,∞) and specify the mean and standard deviation of the horizontal and vertical 

contrasts.  The intensity-mean, continuously valued over [0,∞) is the average pixel 

intensity of the segment, defined as the mean of the next three attributes.  The rawred-

mean (R), rawblue-mean (B), and rawgreen-mean (G), defined over [0,∞), are the 

average red, blue, and green over the segment.  Then, the exred-mean, exblue-mean, and 

exgreen-mean, defined over (-∞,∞), are the excess red (2R - (G + B)), excess blue (2B – 

(G + R)), and excess green (2G – (R + B)).  Finally, the value-mean, saturation-mean, 

and hue-mean are a non-linear three-dimensional transformation of R, G, and B. 

The first step in this study was to perform a multiple discriminant analysis on the 

features of the training data.  Following the development in section 3.8.3 of [16], we 

determined the within-class scatter matrix SW and the between-class scatter matrix SB.  

This allows us to pose and solve the generalized eigenvalue problem 

iWiiB wSwS λ=         (1) 

where wi are the generalized eigenvectors and λi are the generalized eigenvalues.  The 

magnitude of the largest eigenvalue was 2.18 followed by 0.0055 as the next largest.  

This implies that a large majority of the differences between image classes is contained in 

the features indicated by the eigenvector w1 corresponding to λ1 = 2.18.  The indicated 

attributes, meaning those features whose corresponding elements in w1 have magnitudes 

significantly greater than zero, were intensity-mean, rawred-mean, rawblue-mean, 

rawgreen-mean, exred-mean, exblue-mean, and exgreen-mean.  These features will be 

hereafter referred to as the MDA features.  Given that the intensity and the excess color 
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values are defined as linear combinations of R, G, and B, we may therefore conclude that 

average pixel color is the greatest discriminating factor between image segment classes. 

III. Classification Methods Applied 

Several different classification methods were applied to the image segments.  

These classifiers included Bayes’ decision, k-nearest neighbor, probabilistic neural 

networks [12,13], minimum mean-squared error (MSE) [16], Lagrangian support vector 

machines (SVM) [14], and m-class SVM [15]  For each of these approaches, the 

classification algorithm was first trained using the training data, and the algorithm was 

then applied to the testing data.  Also, for each of these approaches, training and testing 

was done with the full set of image features and with just the MDA features. 

A. Bayes’ Decision 

The Bayes’ decision classifier is proven to give the best performance of any 

classifier, provided that an accurate definition of each class’s posterior probability density 

function (PDF) is available.  As analytical expressions for the PDFs of the image segment 

feature data is not available, we assumed that the features of each image class were 

jointly Gaussian.  Therefore, in the training phase of this experiment, we computed a 

sample mean for each class 

∑
∈

=
jClassi
i

j
j x

N
m

1
        (2)  

and a sample covariance matrix for each class 

( )( )∑
∈

−−=
jClassi

T
jiji

j
j mxmx

N
K

1
      (3) 



 6

where Nj = 30 is the number of samples in class j.  We then removed rows and columns of 

each Kj until they became non-singular.  The posterior PDF of class j may then be written 

as 
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and thus the Bayes’ decision classifier is 
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This classifier, as described above, was applied to the full set of feature data and 

to the reduced set of MDA features.  The results of these experiments are shown in the 

confusion matrices of Table 1 for the full set of features and Table 2 for the MDA 

features.  The classifier using the full set of features achieved a probability of correct 

classification (Pcc) of 0.844, and the classifier using the MDA features achieved a Pcc of 

0.845.  This indicates that the MDA features capture all of the information relevant to the 

Bayes’ decision classifier, with an assumed Gaussian PDF, and may even offer a slight 

reduction in noise, by discarding features that are not informative.  In both cases, the 

cement, foliage, path, and window were the most difficult classes to recognize. 

Table 1: Confusion matrix using Bayes' decision on the full feature set.
Probability of Decision
Classification Cement Brickface Foliage Grass Path Sky Window

Cement 0.76 0.00 0.04 0.00 0.13 0.00 0.07
Brickface 0.00 0.98 0.00 0.00 0.01 0.00 0.01
Foliage 0.05 0.00 0.58 0.00 0.00 0.00 0.37

Truth Grass 0.00 0.00 0.00 0.99 0.00 0.00 0.01
Path 0.13 0.00 0.01 0.00 0.86 0.00 0.01
Sky 0.01 0.00 0.00 0.00 0.00 0.99 0.00  
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Table 2: Confusion matrix using Bayes' decision on the MDA features.
Probability of Decision
Classification Cement Brickface Foliage Grass Path Sky Window

Cement 0.70 0.00 0.01 0.00 0.20 0.00 0.09
Brickface 0.01 0.98 0.00 0.00 0.00 0.00 0.01
Foliage 0.02 0.00 0.62 0.00 0.00 0.00 0.36

Truth Grass 0.00 0.00 0.01 0.98 0.00 0.00 0.00
Path 0.18 0.00 0.03 0.00 0.79 0.00 0.00
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Window 0.10 0.00 0.04 0.00 0.01 0.00 0.86

 

B. k-Nearest Neighbor 

The k-nearest neighbor classifier attempts to estimate optimal decision boundaries 

by finding the k training samples nearest to the test sample, and then classifying the test 

sample by majority vote of the k training samples.  In our experiments, the distance 

between samples was measured using an unweighted Euclidean norm 

( ) ( ) ( )yxyxyxd T −−=, ,       (6) 

Then, given the k training samples closest to the test sample x, the decision rule may be 

written as 

 { }kj
j
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=       (7) 

where Freqj measures the number of occurrences of class j in the set {x1, x2, …, xk}.  To 

vary the tightness of the classifier’s fit to the training data, we varied the number of 

nearest neighbors k from one to eight.  The experimental results, achieved by varying k, 

are shown in Figure 1 for the full feature set and the MDA features.  It can be seen in 

Figure 1 that the best performance is achieved with k = 1, the confusion matrices for 

which are given in Tables 3 and 4.  The k-nearest neighbor classifier achieved Pcc of 

0.854 for the full data set and 0.855 for the MDA features.  As for the Bayes’ decision 

classifier, the cement, foliage, path, and window were the most difficult to classify. 
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Figure 1: Varying k in the nearest neighbor classifier varies the tightness of the classifier's fit 
to the training data. 

Table 3: Confusion matrix using k -nearest neighbor classifier (k =1) on the full feature set.
Probability of Decision
Classification Cement Brickface Foliage Grass Path Sky Window

Cement 0.63 0.01 0.02 0.00 0.27 0.00 0.08
Brickface 0.00 0.99 0.00 0.00 0.00 0.00 0.01
Foliage 0.02 0.00 0.74 0.00 0.02 0.00 0.23

Truth Grass 0.01 0.00 0.00 0.99 0.00 0.00 0.00
Path 0.13 0.00 0.01 0.00 0.85 0.00 0.01
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00  

Table 4: Confusion matrix using k -nearest neighbor classifier (k =1) on the MDA features.
Probability of Decision
Classification Cement Brickface Foliage Grass Path Sky Window

Cement 0.65 0.00 0.01 0.00 0.28 0.00 0.06
Brickface 0.00 0.99 0.00 0.00 0.00 0.00 0.01
Foliage 0.03 0.00 0.69 0.00 0.02 0.00 0.26

Truth Grass 0.00 0.00 0.00 1.00 0.00 0.00 0.00
Path 0.14 0.00 0.00 0.00 0.84 0.00 0.02
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Window 0.10 0.01 0.08 0.00 0.00 0.00 0.82

 

C. Probabilistic Neural Network 

Similar to the k-nearest neighbor classifier, the probabilistic neural network (PNN) 

classifier attempts to estimate optimal decision boundaries based on the Euclidean 

distance from the test sample to each training sample.  The Matlab PNN is a neural 



 9

network in two layers.  The first layer computes the distance from the test sample to each 

training sample.  The second layer linearly combines the distances computed for the 

training samples of each class, to produce a posterior probability score for each class.  A 

compete transfer function then selects the class with the highest posterior probability.  

The Matlab PNN function allows user control of a “spread” variable, which determines 

the tightness of the classifier’s fit to the training data.  The results obtained by varying 

this spread variable from 0 to 5 are shown in Figure 2.  The classifier using the full data 

set and a spread of 2.8 achieved a Pcc of 0.846, and the classifier using the MDA features 

and a spread of 0.4 achieved a Pcc of 0.852.  These results are shown in the confusion 

matrices of Tables 5 and 6, and it can be seen that the problematic image classes are 

consistent with the previous two classifiers. 

Raw Training

MDA Training

MDA Testing

Raw Testing

 

Figure 2: Varying the spread in the PNN classifier varies the tightness of the classifier's fit to 
the training data. 
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Table 5: Confusion matrix using PNN classifier (spread = 2.8) on the full feature set.
Probability of Decision
Classification Cement Brickface Foliage Grass Path Sky Window

Cement 0.64 0.01 0.02 0.00 0.26 0.00 0.08
Brickface 0.00 0.99 0.00 0.00 0.00 0.00 0.01
Foliage 0.06 0.00 0.74 0.00 0.02 0.00 0.18

Truth Grass 0.01 0.00 0.00 0.99 0.00 0.00 0.00
Path 0.14 0.00 0.01 0.00 0.84 0.00 0.01
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00

 

Table 6: Confusion matrix using PNN classifier (spread = 0.4) on the MDA features.
Probability of Decision
Classification Cement Brickface Foliage Grass Path Sky Window

Cement 0.65 0.00 0.01 0.00 0.28 0.00 0.06
Brickface 0.00 0.99 0.00 0.00 0.00 0.00 0.01
Foliage 0.04 0.00 0.69 0.00 0.02 0.00 0.26

Truth Grass 0.01 0.00 0.00 0.99 0.00 0.00 0.00
Path 0.14 0.00 0.00 0.00 0.84 0.00 0.02
Sky 0.01 0.00 0.00 0.00 0.00 0.99 0.00
Window 0.10 0.01 0.08 0.00 0.00 0.00 0.81

 

D. Minimum Mean-Squared Error 

In a 2-class classification problem, the minimum MSE classifier decision may be 

expressed as 
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The linear discriminant coefficients a are determined by 
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where R contains the set of training features, such that Rij is feature j of training sample i.  

The vector b is defined such that bi is 1, if sample i is from class 1, and is –1, if sample i 

is from class 2.  The least squares solution of (9) assumes that sufficient training samples 

are available such that RTR is full rank. 
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 The minimum MSE classifier may be extended to an m-class problem by simply 

determining m-1 linear discriminants.  In which case, each classification is handled 

sequentially by the decision rule 
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where the order in which the classes are considered is significant.  One must consider the 

clustering of the classes in feature space to decide this order.  Classes that lie on the edge 

of the cluster should be classified first, thus allowing the discriminant of lowest 

complexity.  The classifier may fit the training data more tightly by projecting the data 

samples into different orders of polynomial space.  Figure 3 shows the classification 

results from varying the projected polynomial order from 1 to 8.  The classifier using the 

full set of features and projecting into second order polynomial space achieved a Pcc of 

0.823, and the classifier using the MDA features and projecting into third order 

polynomial space achieved a Pcc of 0.83.  The confusion matrices for these results are 

given in Tables 7 and 8, where the typical classes remain problematic.  It is important to 

highlight that the minimum MSE classifier is designed by minimizing the MSE, which 

does not necessarily carry any implications with respect to the probability of correct 

classification. 
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Figure 3:  Varying the projected polynomial order in the minimum MSE classifier varies the 
tightness of the classifier's fit to the training data. 

Table 7: Confusion matrix using the 2nd order minimum MSE classifier on the full feature set.
Probability of Decision
Classification Cement Brickface Foliage Grass Path Sky Window

Cement 0.50 0.00 0.03 0.00 0.35 0.00 0.12
Brickface 0.00 0.97 0.00 0.00 0.01 0.00 0.02
Foliage 0.01 0.01 0.79 0.00 0.04 0.02 0.13

Truth Grass 0.00 0.00 0.00 0.99 0.01 0.00 0.00
Path 0.15 0.00 0.03 0.00 0.81 0.00 0.00
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00  

Table 8: Confusion matrix using the 3rd order minimum MSE classifier on the MDA features.
Probability of Decision
Classification Cement Brickface Foliage Grass Path Sky Window

Cement 0.52 0.00 0.02 0.00 0.32 0.00 0.13
Brickface 0.00 0.97 0.00 0.00 0.01 0.00 0.02
Foliage 0.02 0.00 0.85 0.01 0.00 0.03 0.08

Truth Grass 0.00 0.00 0.01 0.99 0.00 0.00 0.00
Path 0.16 0.00 0.03 0.00 0.77 0.00 0.04
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Window 0.05 0.00 0.12 0.01 0.00 0.12 0.71  

E. Lagrangian Support Vector Machine 

Support vector machine classifiers are based on solving a constrained quadratic-

programming problem that yields a maximum-margin separating surface between two 

classes.  In [14], Mangasarian and Musicant reformulate the standard SVM programming 

problem to allow the minimization to be performed on an unconstrained and 
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differentiable convex function, in a space of dimensionality equal to the number of 

training samples.  In application to our m-class image segment classification problem, m-

1 Lagrangian SVMs were determined using radial basis functions.  The class decision 

was then made sequentially, by considering one class at a time as in (10) for the 

minimum MSE classifier.  The spread of the radial basis functions were varied from 0 to 

500, in order to control the tightness of the classifier’s fit to the training data.  Figure 4 

shows the results obtained by varying this spread for the full data set and the MDA 

features.  The full data set classifier achieved a Pcc of 0.743 with a spread of 400, and the 

MDA feature classifier achieved a Pcc of 0.762 with a spread of 120.  The confusion 

matrices for these results are given in Tables 9 and 10, where again the typical classes 

remain problematic. 
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Figure 4:  Varying the spread of the radial basis functions in the Lagrangian SVM classifier 
varies the tightness of the classifier's fit to the training data. 
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Table 9: Confusion matrix using the Lagrangian SVM classifier (spread=400) on the full feature set.
Probability of Decision
Classification Cement Brickface Foliage Grass Path Sky Window

Cement 0.19 0.04 0.00 0.00 0.63 0.05 0.08
Brickface 0.02 0.95 0.02 0.00 0.00 0.00 0.01
Foliage 0.04 0.01 0.59 0.00 0.02 0.12 0.21

Truth Grass 0.00 0.01 0.00 0.98 0.00 0.00 0.01
Path 0.04 0.00 0.00 0.00 0.87 0.09 0.00
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00

 

Table 10: Confusion matrix using the Lagrangian SVM classifier (spread=120) on the MDA features.
Probability of Decision
Classification Cement Brickface Foliage Grass Path Sky Window

Cement 0.19 0.02 0.00 0.00 0.63 0.08 0.08
Brickface 0.02 0.95 0.00 0.00 0.00 0.00 0.02
Foliage 0.04 0.00 0.54 0.00 0.05 0.04 0.32

Truth Grass 0.02 0.00 0.00 0.96 0.00 0.02 0.00
Path 0.03 0.01 0.00 0.00 0.96 0.00 0.00
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Window 0.06 0.00 0.18 0.00 0.02 0.00 0.73

 

F. m-Class Support Vector Machine  

 The m-class SVM classifier built by Yi Zhao [15] performs joint m-class pattern 

recognition by solving the constrained quadratic-programming problem necessary for a 

maximum-margin separating surface.  A radial basis function was used as the kernel for 

the SVM, and the variance of this basis function was varied from 10-5 to 10-1, in order to 

control the tightness of the classifier’s fit to the training data.  These results are shown in 

Figure 5 for the full feature set and the MDA features.  The full feature set classifier and 

the MDA features classifier both achieved their best performance with a variance of 10-3, 

achieving probabilities of correct classification of 0.872 and 0.877, respectively.  The 

confusion matrices for these results are shown in Tables 11 and 12.  The cement 

remained the most difficult class to identify, but the other previously problematic classes 

did show some improvement.  The m-class SVM classifier achieved the best performance 

of all of the classifiers considered. 
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Figure 5:  Varying the variance of the radial basis functions in the m-class SVM classifier 
varies the tightness of the classifier's fit to the training data. 

Table 11: Confusion matrix using the m -class SVM classifier (variance=10-3) on the full feature set.
Probability of Decision
Classification Cement Brickface Foliage Grass Path Sky Window

Cement 0.63 0.00 0.05 0.00 0.24 0.00 0.09
Brickface 0.00 0.98 0.00 0.00 0.00 0.00 0.02
Foliage 0.01 0.00 0.87 0.00 0.01 0.00 0.11

Truth Grass 0.00 0.00 0.01 0.99 0.00 0.00 0.00
Path 0.13 0.00 0.05 0.00 0.81 0.00 0.01
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Window 0.04 0.00 0.13 0.00 0.00 0.00 0.82

Table 12: Confusion matrix using the m -class SVM classifier (variance=10 -3) on the MDA features.
Probability of Decision
Classification Cement Brickface Foliage Grass Path Sky Window

Cement 0.60 0.00 0.00 0.00 0.29 0.00 0.11
Brickface 0.00 0.98 0.00 0.00 0.00 0.00 0.02
Foliage 0.03 0.00 0.82 0.00 0.01 0.00 0.14

Truth Grass 0.00 0.00 0.00 0.99 0.00 0.00 0.00
Path 0.12 0.00 0.00 0.00 0.87 0.00 0.01
Sky 0.00 0.00 0.00 0.00 0.00 1.00 0.00
Window 0.04 0.01 0.07 0.00 0.00 0.00 0.88  

IV. Conclusions 

Based on the results discussed above, the following observation may be made.  

First, MDA successfully identifies the information rich features of a data set.  This 

conclusion is supported by the fact that the classifiers considered performed as well on 
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the MDA features as the full data sets, if not slightly better.  Second, as the Bayes’ 

decision classifier did not achieve the best performance, we must conclude one or both of 

the following: 1) a jointly Gaussian PDF does not accurately model the feature data, and 

2) the statistics computed from the training data were not precise enough.  Third, given 

that the k-nearest neighbor classifier performed best with k = 1, we may conclude that 

there were not sufficient training samples available to accurately characterize the feature 

PDFs.  Finally, the joint m-class SVM classifier significantly outperformed the m-1 

sequential Lagrangian SVM classifiers, indicating the sub-optimal nature of either the 

Lagrangian SVM or the sequential architecture. 
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