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 Abstract 

Gene expression signatures from microarray experiments promise to provide important prognostic tools for 

predicting disease outcome or response to treatment.  A number of microarray studies in various cancers have reported 

such gene signatures.  However, the overlap of gene signatures in the same disease has been limited so far, and some 

reported signatures have not been reproduced in other populations.  Clearly, the methods used for verifying novel gene 

signatures need improvement. In this paper, we describe an experiment in which microarrays and sample hybridization 

are designed according to the statistical principles of randomization, replication, and blocking.  Our results show that 

such designs provide unbiased estimation of differential expression levels as well as powerful tests for them. 

 
Key words: Microarray experiments, experimental design, familywise error rate, multiple comparisons, sensitivity and 

specificity.  

Key points:  Statistically designing microarray experiments may improve the reproducibility of gene expression 

signatures for cancer prognoses.  We describe an experiment in which microarrays and sample hybridization are 

designed according to the statistical principles of randomization, replication, and blocking.  Such designs avoids 

confounding effects, provide unbiased estimation of differential expression levels, as well as increase sensitivity and 

specificity. 
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1. THE POTENTIAL OF USING GENE 

EXPRESSION SIGNATURES AS DIAGNOSTIC 

TOOLS  

The ability to analyze the expression of a large number of 

genes in a single experiment using microarrays has 

revolutionized biomedical research, particularly cancer 

research.  Multiple microarray studies in various different 

cancers have resulted in gene signatures which have been 

proposed to be directly associated with risk of disease 

recurrence, treatment or outcome.  For example, by 

examining the expression of 25,000 genes in tumors from 

young (< 55 years at diagnosis), node-negative, sporadic 

breast cancer cases, van’t Veer et al. identified a 70 gene 

signature that was strongly predictive of short interval to 

distant metastasis [1].  Van de Vijver et al. confirmed 

these findings in a larger group of 295 young patients (< 

53 years at diagnosis) with stage I or stage II disease [2].  

Also, Ma et al. performed microarray analysis on 22,000 

genes in frozen breast tumors and microdissected tumor 

cells from 60 patients that had received Tamoxifen as 

only adjuvant therapy [3].  From this analysis two genes 

emerged, HOXB13 and IL17BR, that showed the 

strongest correlation with clinical outcome.  Many 

similar studies have been performed in other diseases 

including renal cancer [4, 5], non-small cell lung cancer 

(reviewed in [6]) and in the various different leukemias 

(reviewed in [7]).  

However, several problems with microarray analysis 

have recently emerged.  First, microarray analyses 

performed in different research laboratories have resulted 

in limited overlap in gene signatures in the same disease. 

In a study on gene-expression profiles to predict distant 

metastasis of lymph-node-negative primary breast cancer, 

Wang et al. recently found a 76-gene signature strongly 

predictive of metastatic disease [8]. However, despite 

many similarities in study design, only three genes 

overlapped with the van't Veer et al [1] and van de Vijver 

et al [2] studies, namely cyclin E2, origin recognition 
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complex and a TNF superfamily protein [8]. Similarly, in 

diffuse large B-cell lymphoma two groups have identified 

gene signatures to predict outcome in this heterogenous 

cancer.  Rosenwald et al. reported a 17 gene signature [9] 

and Shipp et al. reported a 13 gene signature [10], both 

predicting survival after conventional chemotherapy.  

Interestingly there was no overlap in the two gene 

signatures.  Second, some of the proposed signatures 

have failed to reproduce in other populations.  For 

example, using real-time quantitative PCR and an 

independent cohort of patients, Reid et al. failed to 

validate the predictive model of the two genes HOXB13 

and IL17BR for treatment outcome in breast cancer [11] 

reported originally by Ma et al. [3]. 

It is clear that if microarrays are to be used as a 

diagnostic device, the results need to be reproducible and 

sensitivity and specificity of the signatures need to be 

estimable.    So far, this has not been the case and 

microarray studies have not paid serious enough attention 

to statistical design issues.  Principles such as 

randomization, replication, and blocking, which are 

considered essential to the integrity of clinical trials, 

generally have not been applied to microarray 

experiments.  Different systematic (non-random) 

placement of probes on microarrays for different 

platforms may account for different biases among 

different platforms.  Also, absence of true replications in 

gene probes on some platforms might have made 

estimations of variability unreliable.  For example, the 

van’t Veer et al. study used Agilent microarrays with one 

60-mer probe per gene per array/patient [1].  Thus, there 

were no true replications to estimate variability.   

Despite the above problems and criticisms, gene 

expression signatures and the use of microarrays will 

clearly provide an important diagnostic tool for 

predicting disease outcome or response to treatment.  

Most of the gene expression signatures proposed to date 

usually consist of a few dozen or hundred genes, picked 

from 20-25,000 genes on a microarray.  In order to 

confirm the validity of such gene expression signatures, 

and in order to use them in a diagnostic setting in the 

future, it is necessary to test them rigorously and 

determine their sensitivity and specificity.  Before 

microarrays can be used as medical devices, statistical 

validation of proposed gene signatures in terms of 

sensitivity and specificity is required by the U.S. FDA 

[12, 13] for pre-market approval.  We believe that 

designing microarrays and microarray experiments 

statistically, using concepts that are routinely applied in 

clinical trials, makes such validation more feasible.  Our 

reason for this is explained below.  We will discuss 

statistical principles for placement of both gene probes 

and biological samples.  For a general discussion of 

statistical design issues of microarray experiments, the 

reader is referred to Allison et al. [14] and Spruill et al. 

[15]. 

1.1 BLOCKING 

Gene expression measurements from microarrays 

are potentially affected by extraneous effects such as 

array processing effects.  In this context, a statistical 
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“block” is a condition under which measured gene 

expressions are likely to be equally affected by 

confounding factors.  A block might, therefore, be an 

array, or a batch of arrays processed together. 

Some microarrays allow only one biological sample 

to be placed on each array.  With one patient’s sample 

per array, it is impossible to separate array to array 

variability from patient to patient variability.  To 

normalize the expression levels from experiments using 

such arrays, it is unclear whether data observed under 

two or more conditions should be normalized together or 

separately.  For example, suppose the purpose of the 

experiment is to compare expression levels of low risk 

and high risk patients.  If expression levels from all the 

arrays are not normalized together, then observed 

differences due to patients belonging to different risk 

groups are completely confounded with potential 

differences due to array processing.  On the other hand, if 

the arrays are normalized together using quantile 

normalization, then there is an implicit assumption made 

that switching a patient from a low risk group to a high 

risk group merely permutes the genes in terms of the 

ordering of their expression levels, while keeping the 

magnitudes of the expression levels of the genes same. 

However, if the microarrays allow multiple samples 

to be placed on each array, then by keeping the 

proportion of samples from the groups to be compared 

the same for each array, one can expect the collection of 

the magnitude of the expression levels of the genes to be 

approximately the same across arrays.  It is then 

reasonable to normalize all the arrays together.  

Furthermore, basic statistical design principles suggest 

that group comparison is more efficient if equal numbers 

of samples from each group are placed in every block.  

Statistical analysis of a block design proceeds by first 

comparing different risk groups within blocks, and then 

combining such comparisons across blocks.  Such 

analysis increases sensitivity and specificity because it 

eliminates array to array variability in the comparisons.  

Some microarrays, including the NimbleGen 12-well 

arrays, can have 12 biological samples hybridized on the 

same slide (chip), so each array can conveniently form a 

block, as we shall demonstrate. 

1.2 RANDOMIZATION 

If placement of the biological samples onto 

microarrays is not randomized, then observed differences 

in expression levels may be due to batch processing or 

position effects.  To avoid such bias and confounding, we 

believe the placement of biological samples onto the 

microarrays should be randomized.  If placement of the 

probes on microarrays is not randomized, a prediction 

algorithm derived from one type of microarrays may 

contain bias and the prediction therefore not reproducible 

when expression levels are measured with another type of 

microarrays.  To avoid such bias, we recommend that the 

placement of probes on the microarrays be randomized as 

well.   

1.3 REPLICATION 

Measurements on gene expression levels inherently 

contain variability.  To reliably estimate each patient’s 

gene expression levels, we recommend each gene of a 
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patient be probed with replicated probes or probe sets, if 

sample quantity and manufacturing technology allows it. 

 

2. AN EXAMPLE TO DEMONSTRATE 

SENSITIVITY AND SPECIFICITY   

To demonstrate the sensitivity and specificity of 

statistically designed microarrays, we conducted a proof-

of-concept study using samples with known differences.  

We utilized four 12-well NimbleGen microarrrays, with 

the wells laid out in a three rows by four columns pattern 

on each microarray.  Each of the twelve wells contained 

the same 200 probe sets, one probe set for each of 200 

genes (167 purported breast cancer prognostic genes and 

33 maintenance genes).  The genes were selected from 

recent publications which have reported gene expression 

signatures in breast cancer [1, 16, 17] and from 

publications describing expression of maintenance genes 

[18-20]. The probe set for each gene consisted of sixteen 

24-mer probe pairs.  The placement of the probe pairs in 

each well was completely randomized, separately for 

each well.   

Two different cell lines, HT-29 (colon cancer, 

denoted by Tc) and MCF7 (breast cancer, denoted by Tb) 

were cultured.  Total RNA was isolated and cDNA was 

synthesized for each cell line and then transcribed to 

generate biotin labeled cRNA.     

To facilitate sensitivity assessment, samples from 

the two cell lines were hybridized at two different 

concentrations: the routinely used concentration (0.5 

μg/well, denoted by CL), and at a three times higher 

concentration (1.5 μg/well, denoted by CH).  Samples of 

high concentration should show consistently higher 

intensities than samples of low concentration.  The more 

significant differences can be inferred, the more sensitive 

the microarray experiment.  Specificity can be assessed 

by comparing the samples from the same cancer cell line, 

as no practical differences are expected among them. 

Twelve sets of labeled cRNA samples of the four 

combinations TbCH, TbCL, TcCH, and TcCL were 

hybridized to four 12-well micorrays, as three 

replications of 4×4 cyclic Latin Square designs (Figure 

1).  In each of the three Latin Squares, each combination 

appears exactly once in every row and column. As a 

result, any effects due to array, row, or column will be 

automatically removed from the analysis by virtue of the 

design. 
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Figure 1: Experimental Plan - Latin Square Design 

Array 1 Array 3 

T1CL T1CH T2CL T2CH

 
T2CL T2CH T1CL T1CH

T1CH T2CL T2CH T1CL  T2CH T1CL T1CH T2CL

T2CL T2CH T1CL T1CH T1CL T1CH T2CL T2CH

Array 2 Array 4 

T2CH T1CL T1CH T2CL T1CH T2CL T2CH T1CL

T1CL T1CH T2CL T2CH T2CL T2CH T1CL T1CH

T1CH T2CL T2CH T1CL T2CH T1CL T1CH T2CL

 

Finally, in order to avoid the systematic error (for 

example, TcCL is always between TbCH and TcCH) in 

this design, the actual order in which the treatment 

combinations were placed into the wells involved an 

additional randomization step, as follows.   Starting 

with the original design, a random number generator 

was used to re-order the four columns and rows, 

separately for each of the four arrays (pp. 388-389 in 

[21]). 

2.1 BACKGROUND CORRECTION AND 

ARRAY NORMALIZATION  

We performed background correction as 

described in Irizarry et al. [22].  With our design, 

every combination appears twelve times in the 

experiment, once in each row of every array, and three 

times in each column over the four arrays.  This 

balances potential well position effects.  Also, with 

this design, every combination appears exactly three 

times in each array, so it is reasonable to expect the 

distribution of the expressions to be the same across 

the arrays.  We therefore applied quantile 

normalization to the four arrays as described in 

Bolstad et al. [23].  Specifically, background-adjusted 

PM intensities for each gene from each array were 

combined together as a single vector of measurement.  

Quantile normalization was then utilized to equalize 

the distributions of the four vectors from the four 

arrays. 

2.2 SENSITIVITY ANALYSIS  

Sensitivity, in the context of gene expression 

level analysis, means inferring genes that are truly 

differentially expressed to be differentially expressed.  

In our experiment, this means inferring samples of 

higher concentration to be differentially expressed 

from samples of lower concentration, within each cell 

line. 

Let  denote the background-corrected and 

quantile normalized logarithm of PM intensity for the 

g

gijky

th probe set (g=1,…,200), ith treatment (i=1,…,4), jth 

well (j=1,…,12), and kth probe (k=1,…16).  The index 

i=1, 2, 3, 4 corresponds to combinations TbCH, TbCL, 
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TcCH, and TcCL.  We assume  follows a linear 

additive model 

gijky

 
,gijkgkgiggijky εβτμ +++=   

 ,16,...,1,12,...,1,4,...,1 === kji
(1) 

where gμ  is a representation of gene expression for 

the gth gene, giτ  is the ith treatment effect on the gth 

gene, gkβ  is the kth probe effect on the gth gene.  The 

errors gijkε  have mean zero and we assume they have 

approximately the same variance  across the 

treatments, but not necessarily across genes.  We 

further assume the correlation between 

2
gσ

gijkε and 

'gijkε  is gρ , for any . 'kk ≠

Our model is similar to that of the robust multi-

array average (RMA) in Irizarry et al [22].  Theirs is a 

2-way linear model with independent identically 

distributed (i.i.d.) errors.  We add a treatment effect 

term as appropriate for our design.  Since our 

experiment has true replications (having eliminated 

confounding effects by blocking), residuals are 

available for us to examine whether the errors are 

independent.  If the errors were independent, then the 

heatmap in Figure 2 should show no particular pattern.  

However, there appear to be positive correlations 

among the probes within wells, as indicated by the 

vertical stripes in Figure 2.  This may be due to the 

fact that if the sample going into a well is over-

amplified, then the sequences for all the probes and 

genes in that well are over-amplified.  We thus do not 

assume independent errors in our model.  However, 

since different samples are placed in different wells, 

and the placement of the samples into the wells are 

randomized according to our statistical design, it is 

reasonable to assume the error vectors of array 

normalized probe intensities to be i.i.d. for each cell 

line and concentration.  To account for dependence 

among the error vectors, we re-sample with 

replacement residual vectors, each vector consisting 

of residuals from within each well.   
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Figure 2: Heatmap of residuals, arranged by array, row, and well 

(a1B3 is array 1, 2nd row, 3rd well from the left, for example), saturation of blue increases as residual increases 

(from negative values to positive values) 

 

In fitting the model, we use the constraint 

, in effect using the average of the probe 

intensities to represent each gene’s expression level.  This 

is in contrast to RMA, using essentially the median of the 

probe intensities. 

∑ =
=

16

1
0

k
gkβ

Sensitivity can be assessed through comparisons of 

the expression levels for each gene within the same cell 

line between high and low concentrations, where there 

are known differences.  The sensitivity parameters are 

21 gg ττ −  and 43 gg ττ − , g= 1,…,200.  Ordinary least 
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squares (OLS) estimators, which are unbiased under 

model (1), are 

..2..121 ˆˆ gggg yy −=−ττ , 

..4..343 ˆˆ gggg yy −=−ττ  

For each gene, we assume the correlations among 

the probe intensities within wells to be the same ( gρ ) 

across the treatments.  We allow for heterogeneity of 

error variances and correlations across genes.  If the 

probes are chosen to have approximately the same 

affinity, then since the placement of the probe sets and 

the probes within each probe set are completely 

randomized within each well, this assumption is not 

unreasonable.  Under this assumption, ordinary least 

squares (OLS) estimates turn out to be the same as 

generalized least squares (GLS) estimates, and they are 

the best linear unbiased estimates (BLUE).  Their 

variances are 

Var( )= Var( )=21 ˆˆ gg ττ − 43 ˆˆ gg ττ − 2
96

151
g

g σ
ρ+

, 

where gρ  is the (unknown) correlation between the 

probe intensities within wells for gene g, and  can be 

estimated by  

2
gσ

2ˆ gσ  = 
749

)( 2
......... gkggigijk

i j k
yyyy +−−∑∑∑

 

Note that the variance of GLS estimates is a constant 

multiplier of .  Thus, even though  is not an 

appropriate standard error (SE) for the estimated 

differential expressions, it serves the purpose of 

appropriately scaling the estimates for the different genes 

in a re-sampling statistical analysis method. 

2
gσ gσ̂

All of the statistical methods we apply control the 

familywise error rate (FWER) at the 5% level.  We 

performed step-down multiple testing as described in 

Section 5 of Hsu, Chang, and Wang [24].  To test for 

differential expressions of the gth gene, we use two-

sample equal variance T-like statistics,
g

gg yy
σ̂

..2..1 −
, 

based on differences of the estimates above scaled 

by .  Each null hypothesis Hgσ̂ 0I that genes with indices 

in I, I ⊆{1, 2, …, 200}, are not differentially expressed 

(while the other genes are) is tested by the maximum T-

like statistic.  To calculate critical values, we re-sample 

with replacement the residual vectors of probe intensities 

vector at a time, re-sampling the residuals within each 

well as a unit.  The residual vectors we re-sample from 

are pooled across the four treatments, following the 

results of Pollard and van der Laan [25] and Huang, Xu, 

Calian, Hsu [26] which state when the sample sizes of the 

treatment are equal, re-sampling methods that re-sample 

residuals pooled across the treatments remain 

approximately valid even if the variance-covariance 

matrices are not exactly the same.  The critical value of 

the 5% test for the null hypothesis H0I that genes with 

indices in the subset I are not differentially expressed is 

the 95th percentile of the bootstrap distribution of the 

maximum of the absolute values of the re-sampled T-like 

statistics with indices in I.  Our multiple testing thus 

satisfy conditions S1, S2, and S3 in Section 5 of Hsu, 

Chang, and Wang [24] and can thus be executed in a 
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step-down fashion.  With a bootstrap replication size B of 

50,000, the results of our step-down testing are reported 

in Table 1 under the heading OLS. 

We first show that multiple testing based on OLS is 

competitive with multiple tests based on RMA median 

polish estimates.  We applied the following multiplicity 

adjustment methods which do not take into account the 

joint distribution of the test statistics to RMA estimates: 

the single-step method based on the Bonferroni 

inequality, Holm’s step-down method based on the 

Bonferroni inequality, Hochberg step-up method based 

on Simes’ inequality, Sidak’s single-step method (Sidak 

SS) based on the product inequality, and Sidak step-down 

method (Sidak SD) based on the product inequality, to 

RMA estimates.  We also applied the Westfall and 

Young re-sampling method [27], which does take into 

account the joint distribution of test statistics, to RMA 

estimates.  P-values were computed by complete 

enumeration of all permutations. The number of 

differentially expressed genes inferred by these methods 

is reported under the headings of Bonferroni, Holm, 

Hochberg, Sidak SS, Sidak SD, and W&Y maxT in Table 

1.   

Table 1:  Comparing number of genes inferred differentially expressed between high and low concentrations 

by RMA methods and OLS method 

 
RMA OLS 

Method Bonferroni Holm Hochberg Sidak SS Sidak SD W&Y 
maxT 

Vector re-
sampling 

HT-29 0 0 0 0 0 16 80 

MCF-7 47 76 198 47 76 199 200 

 

Given the same data and the same familywise error 

rate (FWER) control, product inequality methods will 

always do at least as well as Bonferroni inequality 

methods, but not by much (pp. 13-14 in [28]).  Step-down 

and step-up methods will always do at least as well as 

their corresponding single-step methods.  Whether a step-

down method or a step-up method does better depends on 

data (section 7 in [29]). 

Our OLS analysis is a step-down maxT method 

which takes the correlations among the test statistics into 

account.  So our probe level analysis result is directly 

comparable to W&Y maxT RMA analysis result.  Our 

OLS result is better than all RMA results.  Clearly, the 

OLS method is competitive with the RMA methods. 

We then show that statistically designing microarray 

experiments leads to better sensitivity.  In order to assess 

the benefit of the proposed block design over unblocked 

designs, we generated 100 random designs, each design 

randomly assigning the 48 treatment combinations (12 

for each of TbCH, TbCL, TcCH, and TcCL) to the four 
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arrays (12-wells per array).  Background correction, array 

quantile normalization, OLS estimation, and multiple 

testing were then performed as described earlier.  For the 

HT-29 (colon cancer) cell line, 98 of the random designs 

did not find any gene to be significantly expressed, one 

random design found one gene to be differentially 

expressed, while another random design found 17 genes 

to be differentially expressed.  Figure 3 shows, for the 

MCF-7 (breast cancer) cell line, the histogram of the 

number of genes inferred to be differentially expressed 

between high and low concentrations by the random 

designs. 

Figure 3:  Comparing number of genes inferred differentially expressed between high and low concentrations for 

MCF-7 (breast cancer) cell line 

Random Design vs. Statistical Design 

 

We found that, generally speaking, the more 

balanced the allocation of treatments to wells is within 

each array, the higher the sensitivity.  For example, 

Design III in Table 2 is highly unbalanced, leading to no 

gene identified as differentially expressed with either 

cancer cell line.  Designs I and II are more balanced, 

leading to 17 and 160 genes identified as differentially 

expressed for the colon and breast cancer cell lines, 

respectively.   
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Table 2:  Comparing number of genes inferred differentially expressed between high and low concentrations  

by OLS method 

 

 
Design I Design II Design III 

Cell line Colon Breast Colon Breast Colon Breast 

Concentration High Low High Low High Low High Low High Low High Low 

Array 1 3 1 4 4 4 2 3 3 1 4 6 1 

Array 2 5 5 1 1 3 3 2 4 2 4 1 5 

Array 3 3 4 3 2 2 4 4 2 3 0 4 5 

Array 4 1 2 4 5 3 3 3 3 6 4 1 1 

Differentially 
expressed genes 

identified 

17 56 0 160 0 0 

 

2.3 SPECIFICITY ANALYSIS  

Specificity, in the context of gene expression level 

analysis, means inferring genes that are not differentially 

expressed to have expression levels close to each other.  

Specificity analysis should not be treated as tests for 

significant difference, as a lack of statistically significant 

difference can be due to small sample size or noisy data.  

Instead, specificity should be treated as an equivalence 

problem, in analogy to bioequivalence [30].  In our 

experiment, this means most genes from the same cell 

line and concentration from different arrays should have 

confidence intervals for differential expressions with 

limits not too far from zero. 

For specificity analysis, we add array as a factor in 

modeling.  For each of the 200 genes, for samples from 

the same cell line at the same concentration, we 

computed confidence intervals for pairwise differential 

expressions across the 4 arrays, resulting in 

200μ =1200 confidence intervals.  These confidence 

intervals are computed using a bootstrap technique 

similar to what we described for sensitivity analysis, 

except they are not adjusted for multiplicity.  

(Equivalence confidence intervals do not necessarily 

have to be adjusted for multiplicity [30]). 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
4

Figures 4 and 5 are graphical representation of 1200 

95% individual equivalence confidence intervals for low 

concentration for each of the cell lines.  Confidence 

intervals for high concentration comparisons are similar, 

and are not displayed here.  Similar to volcano plots for 
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p–values, these so-called Location-Scale displays map 

intervals into points [31].  For example, a symmetric 

confidence interval is mapped to a point on the Location-

Scale display with the horizontal coordinate being the 

center of the interval, and the vertical coordinate being 

the half width of the confidence interval. It is a useful 

technique to display many confidence intervals 

simultaneously.  The span of a confidence interval can be 

easily inferred from the location of its corresponding 

point on the Location-Scale display. In the equivalence 

setting, if the point representing a confidence interval is 

within the inverted V contour corresponding to −3 and +3 

say, then that confidence interval is contained in (−3, +3).  

The narrower these confidence intervals are around zero, 

the more specific the microarray experiment. Evidently 

from Figure 4 and 5, almost all the equivalence 

confidence intervals are contained in (−3, +3), which 

indicates an agreement within ±3 is the extent specificity 

can be achieved for an experiment with sample sizes such 

as ours. 

Figure 4:  Equivalence confidence intervals for the Ht-29 cell line  

 

 

 

 

Figure 5:  Equivalence confidence intervals for the MCF-7 cell line 
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3. DISCUSSION  

A good microarray experimental design randomly 

places probes in each well/array, and randomly assigns 

biological samples to wells/arrays, to avoid systemic 

nuisance effects. 

A good microarray experimental design also 

balances the allocation of treatments to avoid potential 

confounding effects.  It is common to observe a batch 

processing effect in microarray experiments.  Often the 

batch effect is stronger than the treatment effect of 

interest.  If the proportion of treatments within each batch 

is not the same between batches, then observed treatment 

differences may be confounded with batch effects, 

leading potentially to irreproducible results.  Some 

microarrays such as those used in our experiment allow 

multiple samples to be placed on each array, so one can 

balance the number of samples from the groups to be 

compared on each array.  One way to generalize our 

finding to microarrays limited to hybridizing one sample 

per array is to think of our experiment of four arrays with 

12-wells each as processing 48 arrays in four batches of 

12 arrays each.  Our investigation shows that if one 

balances the proportion of treatments within each batch, 

then normalization across batches will not lead to 

confounding of batch and treatment effects. 

Finally, a good microarray experimental design also 

balances the allocation of treatments with respect to 

array/batch to improve sensitivity and specificity.  Our 

investigation shows that, if one balances the proportion of 

treatments within each array/batch, then by eliminating 

array/batch variability in the comparisons, sensitivity of 

the statistical analysis is increased. 
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